Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Передача теплоты через цилиндрическую стенку при граничных условиях первого рода




Рассмотрим стационарный процесс теплопроводности в цилиндрической стенке (трубе) с внутренним диаметром d1= 2 r1 и наружным диаметром d2= 2 r2 (рис).
На поверхностях стенки заданы постоянные температуры tc1 и tc2. В заданном интервале температур коэффициент теплопроводности материала стенки λ является постоянной величиной. Необходимо найти распределение температур в цилиндрической стенке и тепловой поток через нее.

Рис.Теплопроводность цилиндрической стенки.

В рассматриваемом случае дифференциальное уравнение теплопроводности удобно записать в цилиндрической системе координат:

Когда коэффициент теплопроводности является функцией температуры вида λ (t)= λ0 (1+ bt), можно показать, что линейную плотность теплового потока можно вычислить по той же формуле, что и для λ =const:

λcp
– среднеинтегральное значение коэффициента теплопроводности. Для нахождения температурного поля при λ = λ (t)= λ0 (1+ bt) можно воспользоваться уравнением закона Фурье, записанного для цилиндрической стенки - выражение (2.46). Если разделить переменные и проинтегрировать уравнение (2.46) в пределах от r=r1 до r и от t=tc1 до t и найти из полученного интеграла t, то получим выражение для температурного поля - выражение (2.47).

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 2425; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.