КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формулы для расчета основных показателей выборочного наблюдения
Для расчета объема выборки нужно знать дисперсию. Она может быть заимствована из проводимых ранее обследований данной или аналогичной совокупности, а если таковых нет, тогда для определения дисперсии надо провести специальное выборочное обследование небольшого объема. Задача: Владелец автостоянки опасается обмана со стороны своих служащих (охраны автостоянки). В течение года (365 дней) владельцем автостоянки проведено 40 проверок. По данным проверок среднее число автомобилей, оставляемых на ночь на охрану, составило 400 единиц, а среднее квадратическое (стандартное) отклонение их числа – 10 автомобилей. Считая отбор собственно-случайным, с вероятностью 0,99 оцените с помощью доверительного интервала истинное среднее число автомобилей, оставляемых на ночь на охрану. Обоснованы ли опасения владельца автостоянки, если среднее число автомобилей, оставляемых на ночь на охрану, составляет 395 единиц? В 24 из 40 проверок число автомобилей на стоянке не превышало 400 единиц. С вероятностью 0,98 найдите доверительный интервал для оценки истинной доли дней в течение года, когда число оставляемых на стоянке автомобилей не превышало 400 единиц. Каким должен быть объем выборки (число проверок), чтобы с вероятностью 0,95 можно было утверждать, что ошибка выборки для средней не превышает 3 автомобиля, если стандартное отклонение равно 10 автомобилям?
1. По условию задачи выборочное обследование проведено с помощью собственно-случайного отбора. Очевидно, что отбор бесповторный, так как не имеет смысла производить проверку более 1 раза в сутки. Известно, что объем генеральной совокупности N =365 дней; объем выборки п =40; средняя выборочная =400 автомобилей; среднее квадратическое отклонение =10 автомобилей; вероятность Р =0,99. Необходимо найти генеральную среднюю, выраженную в доверительном интервале по формуле: . Предельная ошибка выборки для средней при бесповторном отборе находится по формуле: автомобиля. Коэффициент доверия t находится в зависимости от вероятности, в данном случае t =2,58. Дисперсия связана со стандартным отклонение следующим равенством: . . С уверенностью в 99% можно ожидать, что среднее число автомобилей, оставляемых на ночь на охрану находится в интервале от 396 до 404. Таким образом, можно утверждать, что служащие автостоянки обманывают ее владельца.
2. Известно, что объем генеральной совокупности N =365 дней; объем выборки п =40; число проверок, в которых число автомобилей на стоянке не превышало 400 единиц т =24; вероятность Р =0,98. Необходимо найти генеральную долю, выраженную в доверительном интервале по формуле: . Выборочная доля определяется как и равна 0,6 (или 60%). Предельная ошибка выборки для доли при бесповторном отборе находится по формуле: . Коэффициент доверия t находится в зависимости от вероятности, в данном случае t =2,33. Генеральная доля: С вероятностью 0,98 можно ожидать, что доля дней в течение года, когда число оставляемых на стоянке автомобилей не превышало 400 единиц, находится в интервале от 0,43 до 0,77 или от 157 до 281 дня.
3. Известно, что объем генеральной совокупности N =365 дней; предельная ошибка выборки для средней =3 автомобиля; среднее квадратическое отклонение =10 автомобилей; вероятность Р =0,95. Необходимо найти численность выборки для средней при собственно-случайном бесповторном отборе по формуле: Коэффициент доверия t находится в зависимости от вероятности, в данном случае t =1,96. Так как п – целое число, округлим полученный результат до большего целого, учитывая, что необходимо не превышать заданную ошибку. Следовательно, необходимо провести на менее 39 проверок.
Дата добавления: 2015-06-26; Просмотров: 1229; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |