КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение графо-аналитическим методом с применением геометрических соотношений
Решение методом проекций 1. Так как силы P1 и P5 направлены друг к другу под прямым углом, то и совместим с этими силами ось проекций. Тогда векторы P2, P3 и 4 будут образовывать с осями проекций углы, показанные на рис. 45, б. 2. Найдем проекцию равнодействующей на ось х: 3. Найдем проекцию равнодействующей на ось у: 4. Обе проекции искомой равнодействующей равны нулю, значит и сама равнодействующая также равна нулю. Таким образом, данная система сил уравновешена. Иными словами, любую из пяти заданных сил можно рассматривать как уравновешивающую четыре остальных.
1. В данном случае на шарнир В действуют три силы: вес фонаря G (рис. 48, б) и реакции стержней NA и NC, направленные вдоль стержней. Заметим, что стержень АВ сжат, значит реакция NA направлена от стержня к шарниру, а стержень ВС растянут, поэтому реакция NCнаправлена от шарнира к стержню. Шарнир В с действующими на него силами изобразим отдельно. 2. Так как шарнир В под действием этих трех сил находится в равновесии, силовой треугольник, составленный из них, должен быть замкнутым. Выберем произвольную точку D (рис. 48, в) и отложим от нее отрезок DE, изображающий силу G. Из точек Е и D проведем прямые EF и DF, параллельные соответственно АВ и СВ. В полученном треугольнике DEF сторона EF изображает реакцию NA (реакцию стержня АВ) и сторона FD – реакцию NC (реакцию стержня ВС)*. 3. Так как в условии задачи даны линейные размеры кронштейна, величины сил NA и NC наиболее просто определить исходя из подобия треугольников ABC и EFD: Отсюда 4. Неизвестную в задаче длину АС определяем по теореме Пифагора: 5. Окончательно * Если все указанные в п. 2 построения выполнить в определенном масштабе, а затем измеренные длины EF и FD умножить на масштаб построения, то получим решение задачи графическим методом.
Как видно, ответ получается тот же. После решения задач, аналогичных 39 и 40, можно сделать ошибочный вывод, что силовой треугольник и треугольник, образованный стержнями кронштейна, должны быть подобными. Но это совсем не обязательно. В этом легко убедиться, рассмотрев следующую задачу.
Как и следовало ожидать, оба решения дают одинаковый результат. Реакции стержней (их действия на шарнирный болт В) равны NA=2,57 кн и NC=1,85 кн. Точно с такими же усилиями действует шарнирный болт на стержни. Стержень АВ растянут силой 2,57 кн, а стержень СВ сжат силой 1,85 кн. В связи с решением подобных задач методом проекций необходимо отметить следующее. Применяя метод проекций к определению равнодействующей любого числа сходящихся сил, наиболее удобно использовать обычную прямоугольную систему координатных осей. При этом найденные проекции равнодействующей и искомая равнодействующая образуют прямоугольный треугольник, решая который легко определить модуль и направление равнодействующей. Применяя метод проекций к решению задач на равновесие сил, совсем не обязательно использовать взаимно перпендикулярные оси. В тех случаях, когда определяются модули сил, направления которых заданы (как в задачах 40 или 41), каждую из осей целесообразно расположить перпендикулярно к направлению искомых сил. Тогда в каждое уравнение равновесия войдет только одно неизвестное.
Дата добавления: 2015-06-04; Просмотров: 1658; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |