Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ядерные силы




Мы видели, что система, составленная из атома водорода и протона, вследствие обмена одним электроном обладает энер­гией взаимодействия, которая на больших расстояниях R меняется как

где a = . (Обычно говорят, что происходит обмен «виртуальным» электроном, когда, как в нашем случае, элект­рон вынужден перепрыгивать через ту область, где его энергия оказалась бы отрицательной. Конкретнее говоря, «виртуаль­ный обмен» означает, что явление предполагает квантовомеханическую интерференцию между состоянием без обмена и состоянием с обменом.)

А теперь следует задать такой вопрос: не может ли быть, что и силы, действующие между другими частицами, имеют сходное происхождение? Что, к примеру, можно сказать о ядерной силе, действующей между нейтроном и протоном или между двумя протонами? Пытаясь объяснить природу ядерных сил, Юкава предположил, что сила, действующая между двумя нуклонами, вызывается сходным обменным эффектом, только в этом слу­чае из-за виртуального обмена не электроном, а какой-то но­вой частицей, которую он назвал «мезон». Сегодня мы бы отож­дествили мезон Юкавы с p-мезоном (или «пионом»), возникаю­щим в высокоэнергетических столкновениях протонов или других частиц.

Посмотрим для примера, какого рода силы возникнут от того, что протон и нейтрон обменяются положительным пио­ном (p+), имеющим массу m p. Как атом водорода Н0 может, от­казавшись от электрона е-, превратиться в протон р+

Н0® р+ + е-, (8.12)

точно так же протон р+ может перейти в нейтрон n0, отказав­шись от p+-мезона:

р+®n0+p+. (8.13)

Значит, если у нас есть протон (в точке а) и нейтрон (в точке b), разделенные расстоянием R, то протон может стать нейтроном, испуская p+-мезон, который затем поглощается нейтроном в точке b, обращая его в протон. И имеется энергия взаимодей­ствия системы из двух нуклонов и одного пиона, зависящая от амплитуды А пионного обмена, как это было с электрон­ным обменом в ионе Н+2.

В процессе (8.12) энергия атома Н0 (если вычислять ее нерелятивистски, опуская энергию поля электрона WH) мень­ше энергии протона на величину mc 2, так что кинетическая энергия электрона отрицательна — или импульс мнимый [см. уравнение (8.9)]. В ядерном процессе (8.13) массы протона и нейтрона почти равны, так что полная энергия p+-мезона ока­жется равной нулю. Соотношение между полной энергией Е и импульсом р пиона с массой mp таково:

E 2= р 2 с 2+ m 2p c 4.

раз Е равно нулю (или по крайней мере пренебрежимо мало

по сравнению с m p), то импульс опять выходит мнимый:

p=impc.

Повторяя знакомые нам уже рассуждения, с помощью ко­торых мы вычисляли амплитуду того, что связанный электрон проникнет через барьер в пространстве между двумя протонами, мы получаем для ядерного случая амплитуду обмена А, кото­рая — при больших R — будет вести себя как

Энергия взаимодействия пропорциональна А и, значит, ме­няется таким же образом. Мы получаем изменение энергии в форме так называемого потенциала Юкавы между двумя нук­лонами. Кстати, ту же формулу мы получили раньше прямо из дифференциального уравнения для движения пиона в пустом пространстве [см. гл. 28 (вып. 6), уравнение (28.18)].

Следуя той же линии рассуждений, можно попытаться при­кинуть взаимодействие двух протонов (или двух нейтронов), происходящее от обмена нейтральными пионами (p0). Основ­ной процесс теперь таков:

р+®р++p0. (8.15)

Протон может испустить виртуальный p0, оставаясь после этого все еще протоном. Если протонов два, то протон № 1 может испустить виртуальный p0, который поглотится прото­ном № 2. В конце остается опять пара протонов. Это немного не то, что было в случае иона H+2. Тогда Н0 переходил после испускания электрона в другое состояние — в протон. Теперь же мы предполагаем, что протон может испускать p0, не ме­няя своего характера. Такие процессы и впрямь наблюдаются в высокоэнергетических столкновениях. Процесс аналогичен тому, как электрон, испуская фотон, остается все же электроном:

е®е+фотон. (8.16)

Мы не «видим» фотонов внутри электрона до того, как они испустятся, или после того, как они поглотятся, и их «испускание» не изменяет «природы» электрона.

Вернемся к нашей паре протонов. Между ними существует взаимодействие из-за наличия амплитуды А — амплиту­ды того, что один из протонов испускает нейтральный пион, который проскакивает (с мнимым импульсом) к другому про­тону и там поглощается. Амплитуда эта опять пропорциональна (8.14), но mp теперь масса нейтрального пиона. Сходные рас­суждения приводят к такому же взаимодействию между двумя нейтронами. А раз ядерные силы (в пренебрежении электри­ческими эффектами), действующие между нейтроном и прото­ном, между протоном и протоном, между нейтроном и нейтро­ном, одинаковы, то мы приходим к заключению, что массы за­ряженного и нейтрального пионов обязаны быть равны между собой. И экспериментально оказывается, что массы действитель­но очень близки друг к другу, а небольшая разница между ними — это примерно то, что и следует из поправок на собст­венную энергию [см. гл. 28 (вып. 6)].

Существуют и другие виды частиц, скажем.K-мезоны, ко­торыми могут обмениваться два нуклона. Допустим также и одновременный обмен двумя пионами. Но у всех этих прочих обмениваемых «объектов» масса покоя mx выше массы пиона mp, что приводит к членам в амплитуде обмена, изменяющимся как

Такие члены с ростом R отмирают быстрее, чем одномезонный член. Сегодня еще никто не знает, как вычислять эти члены с большей массой, но для достаточно высоких значений R вы­живает только однопионный член. И действительно, те опыты, в которых играет роль только взаимодействие на больших расстояниях, свидетельствуют, что энергия взаимодействия именно такова, как предсказывает теория однопионного обмена.

В классической теории электричества и магнетизма кулоновское электростатическое взаимодействие и излучение света ускоряемым зарядом тесно связаны — оба они вытекают из уравнений Максвелла. Мы видели, что в квантовой теории свет может быть представлен как квантовые возбуждения гармони­ческих колебаний классического электромагнитного поля в ящике. С другой стороны, квантовая теория может быть по­строена при помощи описания света как частиц — фотонов, подчиняющихся статистике Бозе. В гл. 2, § 5, мы подчеркнули, что обе эти взаимоисключающие точки зрения всегда приводят к одинаковым предсказаниям. Может ли вторая точка зрения быть проведена последовательно и до конца, так чтобы в нее вошли все электромагнитные эффекты? В частности, если мы хотим описать электромагнитное поле полностью на языке бозе-частиц, т. е. фотонов, то чем будет вызвана сила Кулона?

С точки зрения «частиц» кулоновское взаимодействие между двумя электронами вытекает из обмена виртуальными фото­нами. Один из электронов испускает фотон [как в реакции (8.16)], который переходит к другому электрону и там погло­щается,— та же реакция идет в обратную сторону. Энергия взаимодействия снова дается формулой типа (8.14), но теперь mp заменяется массой покоя фотона, которая равна нулю. Значит, виртуальный обмен фотоном приводит к энергии взаи­модействия, которая меняется просто обратно пропорциональ­но R — расстоянию между электронами — в точности, как нормальная кулоновская потенциальная энергия! В «частич­ной» (от слова частица) теории электромагнетизма процесс об­мена виртуальным фотоном приводит ко всем явлениям элек­тростатики.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 419; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.