Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гамильтониан частицы со спином 1/2 в магнитном поле




Обратимся теперь еще к одной системе с двумя состоя­ниями. На этот раз нашим объектом будет частица со спином 1/2. Кое-что из того, что мы намерены сказать, затрагивалось уже в предыдущих главах, но повторение поможет нам немного прояснить кое-какие темные места. Покоящийся электрон мы можем считать тоже системой с двумя состояниями. Хотя в этом параграфе мы будем толковать об «электроне», но то, что мы выясним, будет справедливо по отношению ко всякой частице со спином 1/2.

Предположим, что в качестве наших базисных состояний |1 >и | 2 >мы выбрали состояния, в которых z-компонента спина электрона равна либо +h/2, либо - h/2. Эти состояния, конечно, те же самые состояния (+) и (-), с которыми мы встречались в прежних главах. Чтобы согласовать эти и прежние обозначе­ния, спиновое состояние 1 у мы будем отмечать «плюсом», а спи­новое состояние | 2 у — «минусом», причем «плюс» и «минус» относятся к моменту количества движения в направлении z.

Всякое мыслимое состояние |y>электрона можно описать уравнением (8.1), задав амплитуду С 1того, что электрон нахо­дится в состоянии | 1 >, и амплитуду С 2 того, что он находится в состоянии 2у. Для этого нам понадобится гамильтониан нашей системы с двумя состояниями — электрона в магнитном поле. Начнем с частного случая магнитного поля в направле­нии z.

Пусть вектор В имеет только z-компоненту Bz. Из определе­ния двух базисных состояний (что их спины параллельны и анти­параллельны В) мы знаем, что они уже являются стационарными состояниями — состояниями с определенной энергией в маг­нитном поле. Состояние | 1 > соответствует энергии, равной — m Вz, а состояние | 2 > — энергии +m B z. В этом случае га­мильтониан должен быть очень простым, поскольку на С 1 амплитуду оказаться в состоянии | 1 > С 2 не влияет и наоборот:

В этом частном случае гамильтониан равен

Итак, мы знаем, какой вид имеет гамильтониан, когда магнит­ное поле направлено по z, и знаем еще энергии стационарных состояний.

А теперь пусть поле не направлено по z. Каков теперь га­мильтониан? Как меняются матричные элементы, когда поле не направлено по z? Мы сделаем предположение, что для членов гамильтониана имеется своего рода принцип суперпозиции. Точнее, мы предположим, что если два магнитных поля нала­гаются одно на другое, то члены гамильтониана просто склады­ваются: если нам известно Hij для поля, состоящего из одной только компоненты Bz, и известно Нij для одной только Вх, то Hij для поля с компонентами Bz, Bx получится простым сло­жением. Это бесспорно верно, если рассматриваются только поля в направлении z: если удвоить Bz, то удвоятся и все Нij. Итак, давайте допустим, что Н линейно по полю В. Чтобы найти Hij для какого угодно магнитного поля, больше ничего и не нужно.

Пусть у нас есть постоянное поле В. Мы бы могли провести нашу ось z в направлении поля и обнаружили бы два стационарных состояния с энергиями ±mВ. Простой выбор другого направления осей не изменил бы физики дела. Наше описание стационарных состояний стало бы иным, но их энергии по-прежнему были бы ±m B, т. е.

Дальше все уже совсем легко. У нас есть формулы для энер­гий. Нам нужен гамильтониан, линейный по Вх, Вy и Bz, который даст именно такие энергии, если применить нашу общую фор­мулу (8.3). Задача — найти гамильтониан. Прежде всего за­метим, что энергия расщепляется симметрично и ее среднее значение есть нуль. Взглянув на (8.3), мы сразу же увидим, что для этого требуется

Н 22=- H 11.

(Заметьте, что это подтверждается тем, что нам уже известно при Вxy =0; в этом случае Н 11 =-mBz и H 22=m Bz.) Если теперь приравнять энергии из (8.3) к тому, что нам известно из (8.19), то получится

(Мы использовали также тот факт, что Н 21 =Н* 12, так что H 12 H 21 может быть записано в виде | Н12 |2.) Опять в частном случае поля в направлении z это даст

откуда | H 12| в этом частном случае равно нулю, что означает, что в H 12не может войти член с Вz. (Вы помните, что мы гово­рили о линейности всех членов по Вх, Вy и Bz.)

Итак, пока мы узнали, что в Н 11и H 22 входят члены с Вz, а в H 12 и H 21 — нет. Можно попробовать угадать формулы, которые будут удовлетворять уравнению (8.20), написав

H 11=-m В z,

H 22=m B z

и

Оказывается, что никак иначе этого сделать нельзя!

«Погодите,— скажете вы,— H 12 по В не линейно. Из (8.21) следует, что H12=mÖ(В 2 x 2 y)». Не обязательно. Есть и дру­гая возможность, которая уже линейна, а именно

Н 12 =m (Вx+iBy).

На самом деле таких возможностей не одна, в общем случае можно написать

где d — произвольная фаза.

Какой же знак и какую фазу мы обязаны взять? Оказы­вается, что можно выбрать любой знак и фазу тоже любую, а физические результаты от этого не изменятся. Так что выбор — это вопрос соглашения. Еще до нас кто-то решил ставить знак минус и брать еid=-1. Мы можем делать так же и написать

 

(Кстати, эти соглашения связаны и согласуются с тем про­изволом в выборе фаз, который мы использовали в гл. 4.) Полный гамильтониан для электрона в произвольном маг­нитном поле, следовательно, равен

уравнения для амплитуд С 1 и С 2 таковы:

Итак, мы открыли «уравнения движения спиновых состояний» электрона в магнитном поле. Мы угадали их, пользуясь некото­рыми физическими аргументами, но истинная проверка всякого гамильтониана заключается в том, что он обязан давать предсказания, согласующиеся с экспериментом. Из всех сделанных проверок следует, что эти уравнения правильны. Более того, хотя все наши рассуждения относились к постоянному полю, написанный нами гамильтониан правилен и тогда, когда маг­нитные поля меняются со временем. Значит, мы теперь можем применять уравнения (8.23) для решения всевозможных инте­ресных задач.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 753; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.064 сек.