Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Спиновые матрицы. Паули




Обобщение на си­стемы с N состоя­ниями

Состояния поляризации фотона

З. Решение уравне­ний для двух со­стояний

Спиновые матри­цы как операторы

Спиновые матри­цы Паули

Состояниями

ЕЩЕ СИСТЕМЫ С ДВУМЯ

Сказанное нами может вас слегка ввести в заблуждение. Погло­щение ультрафиолетового света в принятой нами для бензола системе с двумя состояниями было бы очень слабым, потому что матричный элемент дипольного момента между двумя состояниями равен нулю. [Оба состояния электрически симметричны, и в нашей формуле (7.55) для ве­роятности перехода дипольный момент m равен нулю, и свет не погло­щается.] Если бы других состояний не было, существование верхнего со­стояния пришлось бы доказывать иными путями. Однако более полная теория бензола, которая исходит из большего числа базисных состояний (обладающих, скажем, смежными двойными связями), показывает, что истинные стационарные состояния бензола слегка искажены по сравне­нию с найденными нами. В результате все же возникает дипольный мо­мент, который и разрешает упомянутые в тексте переходы, приводящие к поглощению ультрафиолетового света.

Мы принимаем энергию покоя m0c2 за «нуль» энергии и считаем магнитный момент m электрона отрицательным числом, поскольку он направлен против спина.

 

 

* Мы немного упрощаем дело. Первоначально химики думали, что должны существовать четыре формы дибромбензола: две формы с атомами брома при соседних атомах углерода (орто-дибромбензол), третья форма с атомами брома при атомах углерода, идущих через один (.мета-дибромбензол), и четвертая форма с атомами брома, стоящими друг против друга (пара-дибромбензол). Однако отыскали они только три формы — суще­ствует лишь одна форма орто-молекулы.

 

* До тех пор, пока нет сильных магнитных полей, это предположе­ние вполне удовлетворительно. Влияние магнитных полей на электрон мы обсудим в этой же главе позже, а очень слабые спиновые эффекты в атоме водорода — в гл. 10.

 


 

Глава 9

 

§ 5. Нейтральный K-мезон *

Повторить: гл. 33 (вып. 3) «Поля­ризация»

 

Продолжаем обсуждение свойств двухуровневых систем. В конце предыдущей главы мы говорили о частице со спином l/2в магнитном поле. Мы описывали спиновое состояние, задавая амплитуду С 1того, что z-компонента спинового момента количества движения равна +h/2, и амплитуду С 2 того, что она равна - h /2. В предыдущих главах мы эти базисные состояния обозначали |+> и |->. Прибегнем опять к этим обозначениям, хотя, когда это будет удобнее, мы будем менять их на | 1 > и | 2 >. Мы видели в последней главе, что когда частица со спином 1/2 и с магнитным моментом m, находится в магнитном поле В =(Вx, Вy, Bz), то амплитуды С+ (=C 1С- (= С 2) связаны сле­дующими дифференциальными уравнениями:

Иначе говоря, матрица-гамильтониан Hij имеет вид

конечно, уравнения (9.1) совпадают с

где i и j принимают значения + и - (или 1 и 2).

Эта система с двумя состояниями — спин электрона — на­столько важна, что очень полезно было бы найти для ее описа­ния способ поаккуратнее и поизящнее. Мы сейчас сделаем небольшое математическое отступление, чтобы показать вам, как обычно пишутся уравнения системы с двумя состояниями. Это делается так: во-первых, заметьте, что каждый член гамильто­ниана пропорционален m, и некоторой компоненте В; поэтому (чисто формально) можно написать

Здесь нет какой-либо новой физики; эти уравнения просто означают, что коэффициенты — их всего 4X3=12 — могут быть представлены так, что (9.4) совпадет с (9.2).

Посмотрим, почему это так. Начнем с B z. Раз В z встречается только в H 11 и H 22, то все будет в порядке, если взять

Мы часто пишем матрицу Hij в виде таблички такого рода:

Для гамильтониана частицы со спином 1/2 в магнитном поле В —это все равно что

Точно так же и коэффициенты можно записать в виде матрицы

Расписывая коэффициенты при Вх, получаем, что элементы матрицы s х должны иметь вид

Или сокращенно:

Инаконец, глядя на B y, получаем

или

Если так определить три матрицы сигма, то уравнения (9.1) и (9.4) совпадут. Чтоб оставить место для индексов i и j, мы отме­тили, какая а стоит при какой компоненте В, поставив индексы х, у, z сверху. Обычно, однако, i и j отбрасывают (их легко себе и так вообразить), а индексы х, у и z ставят внизу. Тогда (9.4) записывается так:

Матрицы сигма так важны (ими беспрерывно пользуются),

что мы выписали их в табл. 9.1. (Тот, кто собирается работать

в квантовой физике, обязан запомнить их.) Их еще называют

спиновыми матрицами Паули — по имени физика, который

их выдумал.

Таблица 9.1 • СПИНОВЫЕ МАТРИЦЫ ПАУЛИ

В таблицу мы включили еще одну матрицу 2X2, которая бывает нужна тогда, когда мы хотим рассматривать систему, о6a спиновых состояния которой имеют одинаковую энергию, или когда хотим перейти к другой нулевой энергии. В таких случаях к первому уравнению в (9.1) приходится добавлять E 0 С +, а ко второму Е0С-. Это можно учесть, введя новое обозначение — единичную матрицу «1», или dij:

переписав (9.8) в виде

Обычно просто понимают без лишних оговорок, что любая константа наподобие Е 0автоматически умножается на еди­ничную матрицу, и тогда пишут просто

Одна из причин, отчего спиновые матрицы так полезны,— это что любая матрица 2x2 может быть выражена через них. Во всякой матрице стоят четыре числа, скажем

Ее всегда можно записать в виде линейной комбинации четы­рех матриц. Например,

Это можно делать по-всякому, но, в частности, можно сказать, что М состоит из какого-то количества s х плюс какое-то коли­чество а и т. д., и написать

где «количества» a, b, g и d в общем случае могут быть комплекс­ными числами.

Раз любая матрица 2X2 может быть выражена через единич­ную матрицу и матрицу сигма, то все, что может понадобиться для любой системы с двумя состояниями, у нас уже есть. Какой бы ни была система с двумя состояниями — молекула аммиака, краситель фуксин, что угодно,— гамильтоново уравнение может быть переписано в сигмах. Хотя в физическом случае электрона в магнитном поле сигмы кажутся имеющими геометрический смысл, но их можно считать и просто полезными матрицами, пригодными к употреблению во всякой системе с двумя состоя­ниями.

Например, один из способов рассмотрения протона и ней­трона — это представлять их как одну и ту же частицу в любом из двух состояний. Мы говорим, что нуклон (протон или нейтрон) есть система с двумя состояниями, в данном случае состояниями по отношению к электрическому заряду. Если рассматривать нуклон таким образом, то состояние | 1 >может представлять протон, а | 2 > — нейтрон. Говорят, что у нуклона есть два состояния «изотопспина».

Поскольку мы будем применять матрицы сигма в качестве «арифметики» квантовой механики систем с двумя состояниями, то наскоро познакомимся с соглашениями матричной алгебры. Под «суммой» двух или большего числа матриц подразумевается как раз то, что имелось в виду в уравнении (9.4).

Вообще если мы «складываем» две матрицы А и В, то «сумма» С означает, что каждый ее элемент Cij дается формулой

Cij=Aij+Bij.

Каждый элемент С есть сумма элементов А и В, стоящих на тех же самых местах.

В гл. 3, § 6, мы уже сталкивались с представлением о матрич­ном «произведении». Та же идея полезна и при обращении с мат­рицами сигма. В общем случае «произведение» двух матриц A и В (в этом именно порядке) определяется как матрица С с элементами

Это — сумма произведений элементов, взятых попарно из i -й строчки А и k -ro столбца В. Если матрицы расписаны в виде таблиц, как на фиг. 9.1, то можно указать удобную «систему» получения элементов матрицы-произведения.

 

Фиг. 9.1. Перемножение двух матриц.

 

Скажем, вы вычисляете С 23. Вы двигаете левым указательным пальцем по второй строчке А, а правым — вниз по третьему столбцу В, перемножаете каждую пару чисел и складываете пары по мере движения. Мы попытались изобразить это на рисунке.

Для матриц 2X2 это выглядит особенно просто. Например, если s х умножается на s x, то выходит

т. е. просто единичная матрица. Или, для примера, подсчита­ем еще

Взглянув на табл. 9.1, вы видите, что это просто матрица s x, умноженная на i. (Вспомните, что умножение матрицы на число означает умножение каждого элемента матрицы на число.) Попарные произведения сигм очень важны и выглядят они довольно забавно, так что мы их выписали в табл. 9.2. Вы сами можете подсчитать их, как мы сделали это с s2 х и s х s y.

С матрицами о связан еще один очень интересный и важный момент. Можно, если угодно, представить себе, что три матрицы s х., s y и s z подобны трем компонентам вектора; его иногда име­нуют «вектором сигма» и обозначают а. Это на самом деле «мат­ричный вектор», или «векторная матрица». Это три разные матрицы, связанные каждая со своей осью х, у или z. С их по­мощью гамильтониан системы можно записать в красивом виде, пригодном для любой системы координат:

Таблица 9.2 • ПРОИЗВЕДЕНИЯ СПИНОВЫХ МАТРИЦ

 

Хотя мы записали эти три матрицы в представлении, в кото­ром понятия «вверх» и «вниз» относятся к направлению z (так что sz выглядит особенно просто), но можно представить себе, как будут они выглядеть в любом другом представлении. И хотя это требует немалых выкладок, можно все же показать, что они изменяются как компоненты вектора. (Мы, впрочем, пока не будем заботиться о том, чтобы доказать это. Проверьте сами, если хотите.) Вы можете пользоваться о в различных системах координат, как если бы это был вектор.

Вы помните, что гамильтониан Н связан в квантовой механике с энергией. Он действительно в точности совпадает с энергией в том простом случае, когда состояний только одно. Даже в системе с двумя состояниями, какой является спин электрона, если записать гамильтониан в виде (9.13), он очень напоминает классическую формулу энергии магнита с магнитным моментом m в магнитном поле В. Классически это выглядит так:

где m — свойство объекта, а В — внешнее поле. Можно вообра­зить себе, что (9.14) обращается в (9.13), если классическую энергию заменяют гамильтонианом, а классическое m — мат­рицей (ms. Тогда после такой чисто формальной замены результат можно будет интерпретировать как матричное уравнение. Иногда утверждают, что каждой величине в классической физике соответствует в квантовой механике матрица. На самом деле правильнее было бы говорить, что матрица Гамильтона соот­ветствует энергии и что у каждой величины, которая может быть определена через энергию, есть соответствующая матрица. Например, магнитный момент можно определить через энергию, сказав, что энергия во внешнем поле В есть — mB. Это определяет вектор магнитного момента m. Затем мы смотрим на формулу для гамильтониана реального (квантового) объекта в магнитном поле и пытаемся угадать, какие матрицы соответ­ствуют тем или иным величинам в классической формуле. С помощью этого трюка иногда у некоторых классических вели­чин появляются их квантовые двойники.

Если хотите, попробуйте разобраться в том, как, в каком смысле классический вектор равен матрице ms; может быть, вы что-нибудь и откроете. Но не надо ломать над этим голову. Право же, не стоит: на самом-то деле они не равны. Кван­товая механика — это совсем другой тип теории, другой тип представлений о мире. Иногда случается, что всплывают неко­торые соответствия, но вряд ли они представляют собой нечто большее, нежели мнемонические средства — правила для за­поминания.

Иначе говоря, вы запоминаете (9.14), когда учите классиче­скую физику; затем если вы запомнили соответствие m®ms, то у вас есть повод вспомнить (9.13). Разумеется, природа знает квантовую механику, классическая же является всего лишь приближением, значит, нет ничего загадочного в том, что из-за классической механики выглядывают там и сям тени квантовомеханических законов, представляющих на самом деле их подоп­леку. Восстановить реальный объект по тени прямым путем ни­как невозможно, но тень помогает нам вспомнить, как выглядел объект. Уравнение (9.13) — это истина, а уравнение (9.14) — ее тень. Мы сперва учим классическую механику и поэтому нам хочется выводить из нее квантовые формулы, но раз и навсегда установленной схемы для этого нет. Приходится каждый раз возвращаться обратно к реальному миру и открывать правильные квантовомеханические уравнения. И когда они оказываются похожими на что-то классическое, мы радуемся. Если эти предостережения покажутся вам надоедливыми, если, по-вашему, здесь изрекаются старые истины об отношении классической физики к квантовой, то прошу прощения: сработал условный рефлекс преподавателя, который привык втолковы­вать квантовую механику студентам, никогда прежде не слыхав­шим о спиновых матрицах Паули. Мне всегда казалось, что они не теряют надежды, что квантовая механика как-то сможет быть выведена как логическое следствие классической механики, той самой, которую они старательно учили в прежние годы. (Может быть, они просто хотят обойтись без изучения чего-то нового.) Но, к счастью, вы выучили классическую формулу (9.14) всего несколько месяцев тому назад, да и то с оговорками, что она не совсем правильна, так что, может быть, вы не будете столь неохотно воспринимать необходимость рассматривать квантовую формулу (9.13) в качестве первичной истины.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1354; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.