КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Случай 3. Другие критерии слишком трудоемки
Этот случай чаще всего относится к критерию χ2. Заменить его критерием φ* можно при условии, если сравниваются распределения признака в двух выборках, а сам признак принимает всего два значения[25]. В качестве примера можно привести задачу с соотношением мужских и женских имен в записных книжках двух психологов (см. п. 4.2, Табл. 4.11). Преобразуем Табл. 4.11 в четырехклеточную таблицу, где "эффектом" будем считать мужские имена. Таблица 5.18 Четырехклеточная таблица для подсчета φ* при сопоставлении записных книжек двух психологов по соотношению мужских и женских имен
Сформулируем гипотезы. H0: Доля мужских имен в записной книжке С. не больше, чем в записной книжке X. H1: Доля мужских имен в записной книжке С. больше, чем в записной книжке X. Далее действуем по алгоритму. По Табл. XIII Приложения 1 определяем, какому уровню достоверности соответствует это значение. Мы видим, что такого значения вообще нет в таблице. Построим "ось значимости". Полученное эмпирическое значение - далеко в "зоне незначимости". f* эмп> f* теор Ответ: H0 принимается. Доля мужских имен в записной книжке психолога С. не больше, чем в запиской книжке психолога X. Исследователь сам может решить для себя, какой метод ему в данном случае удобнее применить - χ2 или φ*. Похоже, что во втором случае меньше расчетов, хотя чуда не произошло: различия по-прежнему недостоверны. Итак, мы убедились, что критерий φ* Фишера может эффективно заменять традиционные критерии в тех случаях, когда их применение невозможно, неэффективно или неудобно по каким-то причинам. Биномиальный критерий m может служить заменой критерия χ2 в случае альтернативных распределений или в случае, когда признак может принимать одно из нескольких значений и вероятность того, что он примет определенное значение, известна. В качестве примера можно привести исследование, посвященное распределению предпочтений по 4-м типам мужественности (см. Задачу 3 к Главе 4). Если бы для испытуемых все 4 типа мужественности были одинаково привлекательными, то на первом месте примерно одинаковое количество раз оказывался бы каждый из типов. Иными словами, вероятность оказаться на первом месте для каждого типа составляла бы 1/4 т.е. Р=0.25. В действительности же Национальный тип оказался на 1-м месте 19 раз, Современный - 7 раз, Религиозный - 3 раза и Мифологический - 2 раза. Можно попытаться определить, достоверно ли Национальный тип чаще оказывается на 1-м месте, чем это предписывается вероятностью Р=0,25? Сформулируем гипотезы. H0; Частота попадания Национального типа мужественности на 1-е место в ряду предпочтений не превышает частоты, соответствующей вероятности Р=0,25. H1: Частота попадания Национального типа мужественности на 1-е место в ряду предпочтений превышает частоту, соответствующую вероятности Р=0,25. Определим теоретическую частоту попадания того или иного типа мужественности на 1-е место при равновероятном выборе: f теор=n· Р =31-0,25=7,75 В данном случае соблюдаются требования, предусмотренные ограничением 3: Р=0,25<0,50; f эмп> f теор. Мы можем использовать биномиальный критерий при n<50. В данном случае n=31. По Табл. XV Приложения 1 определяем критические значения m при n=31, Р=0,25; Q=0,75: Ответ: H0 отвергается. Частота попадания Национального типа мужественности на 1-е место в ряду предпочтений превышает частоту, соответствующую вероятности Р=0,25 (р<0,01). Итак, Национальный тип мужественности действительно чаще оказывается на 1-м месте, чем это происходило бы в том случае, если бы он выбирался на 1-е место равновероятно с другими типами. Отметим, что мы проверяли гипотезу не об отличии данного типа мужественности от других типов, а об отличии частоты его встречаемости от теоретически возможной величины при равновероятном выборе. Все остальные типы и остальные позиции выбора остаются "за кадром" нашего рассмотрения. Аналогичным образом можно сопоставить с теоретической частотой эмпирическую частоту попадания любого другого типа на любую другую позицию.
Дата добавления: 2015-06-04; Просмотров: 363; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |