Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение задачи 6




Решения задач Главы 4

Вопрос 1: Можно ли утверждать, что разные картины методики Хекхаузена обладают разной побудительной силой в отношении моти­вов: а) "надежда на успех"; б) "боязнь неудачи"?

Для того, чтобы ответить на этот вопрос, необходимо сопоставить распределение реакций "надежда на успех" и реакций "боязнь неудачи" с равномерным распределением. Тем самым мы проверим, равномерно ли распределяются реакции "надежды на успех" по шести картинам и равно­мерно ли распределяются реакции "боязни неудачи" по шести картинам.

Количество наблюдений достаточно велико, чтобы мы могли ис­пользовать любой из классических критериев - χ 2 или λ. Однако, как мы помним, картины в данном исследовании предъявлялись разным испытуемым в разных последовательностях, следовательно, мы не мо­жем говорить об однонаправленном изменении признака в какую-либо одну сторону: все разряды (картины) следуют друг за другом в слу­чайном порядке. Это является веским основанием для применения кри­терия χ 2 и отказа от критерия λ.

Рассмотрим оба аспекта поставленного вопроса последовательно.

А) Равномерно ли распределяются реакции "надежды на успех" по шести картинам методики Хекхаузена?

H0: Распределение реакций "надежды на успех" не отличается от рав­номерного распределения.

H1: Распределение реакций "надежды на успех" отличается от равно­мерного распределения.

Рассчитаем теоретические частоты для равномерного распределе­ния по формуле:

где n - количество наблюдений,

k - количество разрядов.

В данном случае количество наблюдений - это количество реак­ций "надежды на успех" у 113 испытуемых. Таких реакций зарегистри­ровано 580, следовательно, n =580. Количество разрядов - это количе­ство стимульных картин, следовательно, k=6. Определяем f теор:

Количество степеней свободы V определяем по формуле:

v = k -l=6-l=5

Итак, поправка на непрерывность не нужна, мы можем произво­дить все расчеты по общему алгоритму. Они представлены в Табл.9.11.

Таблица 9.11

Расчет критерия χ 2 при сопоставлении распределения реакций "надежды на успех" по 6 картинам с равномерным распределением

Разряды-картины методики Эмпирические частоты реакций "надежды на успех" fэ Теоретические частоты реакции "надежды на успех" fт fэ- fт (fэ- fт)2 (fэ- fт)2/ fт
          "Мастер изме­ряет деталь" "Преподаватель и ученик" "В цехе у машины" "У двери ди­ректора" "Человек в бюро" "Улыбающийся юноша"           96,67   96,67   96,67   96,67   96,67   96,67 9,33   5,33 11,33   -46,67   2,33   18,33 87,05   28,41   128,37   2178,09   5,43   335,99 0,90   0,29   1,33   22,53   0,06   3,48
Суммы         28,59
             

По Табл. IX Приложения 1 определяем критические значения χ 2 для v =5:

Построим "ось значимости".

χ2эмп = 28,59

χ2эмп > χ2кр

Ответ: H0 отклоняется. Принимается H1. Распределение реак­ций "надежды на успех" по шести картинам методики Хекхаузена от­личается от равномерного распределения (р <0,01).

Б) Равномерно ли распределяются реакции "боязни неудачи" по шести картинам методики Хекхаузена?

H0: Распределение реакций "боязни неудачи" не отличается от равно­мерного распределения.

H1: Распределение реакций "боязни неудачи" отличается от равномер­ного распределения.

В данном случае количество наблюдений - это число реакций "боязни неудачи", следовательно, n =516; количество разрядов - это число стимульных картин, как и в предыдущем случае, следовательно, k=6. Определяем f теор

f теор =516/6=86

Количество степеней свободы v = k —1=6—1=5. Поправка на не­прерывность здесь тоже, естественно, не нужна.

Все дальнейшие расчеты проделаем по алгоритму в таблице.

Таблица 9.12

Расчет критерия при сопоставлении распределения реакций "боязни неудачи" по 6 картинам с равномерным распределением

Разряды-картины методики Эмпирические частоты реакций "боязни неудачи" fэ Теоретические частоты реакции "боязни неудачи" fт fэ- fт (fэ- fт)2 (fэ- fт)2/ fт
          "Мастер изме­ряет деталь" "Преподаватель и ученик" "В цехе у машины" "У двери ди­ректора" "Человек в бюро" "Улыбающийся юноша"                         -52     -29   -66           31,44   102.74   31,44   0.01   9.78   50,65
Суммы         226,06
             

 

Критические значения χ2при v =5 по Таблице IX Приложения 1 нам уже известны:

χ2эмп > χ2кр

Ответ: H0 отклоняется. Принимается H1. Распределение прояв­лений "боязни неудачи" по шести стимульным картинам отличается от равномерного распределения (р <0,01).

Итак, реакции "надежды на успех" и реакции "боязни неудачи" неравномерно проявляются в ответ на 6 стимульных картин. Однако это еще не означает, что эти картины являются неуравновешенными по направленности воздействия. Может оказаться так, по крайней мере теоретически, что одни и те же картины вызывают большинство реакций обоих типов, а другие картины почти не вызывают реакций или вызывают их достоверно меньше. В этом случае оба эмпирических распределения отличались бы от равномерного, но не различались бы между собой.

Проверим, различаются ли картины теперь уже не по количеству вы­зываемых реакций, а по их качеству, то есть вызывают ли одни картины скорее реакции "надежды на успех", а другие - реакции "боязни неудачи"

Вопрос 2: Можно ли считать стимульный набор методики Хекхаузена неуравновешенным по направленности воздействия?

Решим эту задачу двумя способами: а) путем сравнения распре­деления реакций "надежда на успех" с распределением реакций "боязнь неудачи" по 6-и картинам; б) путем сопоставления распределения реак­ций на каждую картину с равномерным распределением.

Выясним, совпадают ли распределения реакций по двум карти­нам. Для этого сформулируем гипотезы.

H0: Распределения реакций "надежда на успех" и реакций "боязнь не­удачи" не различаются между собой.

H1: Распределения реакций "надежда на успех" и "боязнь неудачи" различаются между собой.

Для того, чтобы облегчить себе задачу подсчета теоретических частот, воспроизведем таблицу эмпирических частот и дополним ее.

Таблица 9.13

Эмпирические и теоретические частоты распределения реакций "надежда на успех" и "боязни неудачи"

Разряды - картины Эмпирические частоты Суммы Теоретические частоты Суммы
Реакций "надежда на успех" Реакций "боязнь неуда­чи"     Реакций "надежда на успех" Реакций "боязнь неуда­чи"
          "Мастер измеря­ет деталь" "Преподаватель и ученик" "В цехе у маши-   "У двери дирек­тора"   "Человек в бюро"   "Улыбающийся юноша"             А   В   д   ж   и   л           Б   Г   Е     К   M           129,1   149,2   75,1   72,5   82,6   71,4 А   В   Д   Ж   И   Л 114,9   132,8   66,9   64,5   73,4   63,6 Б   Г   Е     К   М          
Суммы            
                       

Расчет теоретических частот осуществляется по известной нам формуле:

Произведем расчеты.

fА теор=244·580/1096=129,1

fБ теор=244·516/1096=114,9

fВ теор=282·580/1096=149,2

fГ теор=282·516/1096=132,8

fД теор=142·580/1096=75,1

fЕ теор=142·516/1096=66,9

fЖ теор=137·580/1096=72,5

fЗ теор=137·516/1096=64,5

fИ теор=156·580/1096=82,6

fК теор=156·516/1096=73,4

fЛ теор=135·580/1096=71,4

fМ теор=135·516/1096=63,6

 

По Табл. 9.13 мы видим, что сумма всех теоретических частот равна общему количеству наблюдений, а попарные суммы теоретических частот по строкам равны суммам наблюдений по строкам.

Расчеты критерия χ2будем производить по известному алгоритму. Поправка на непрерывность не вносится, так как v >1:

v =(r -l)(c -l)=(6-l)(2-l)=5

Результаты всех операций по Алгоритму 13 представлены в Табл. 9.14.

Таблица 9.14

Расчет критерия χ2при сопоставлении эмпирических распределений реакций "надежды на успех" (НУ) и "боязни неудачи" (БН)

Ячейки таблицы частот Эмпирическая частота fэ Теоретическая частота fт fэ- fт (fэ- fт)2 (fэ- fт)2/ fт
  А   129,1 -23,1 533,61 4,13
  Б   114,9 23,1 533,61 4,64
  В   149,2 -47,2 2227,84 14,93
  Г   132,8 47,2 2227,84 16,78
  Д   75,1 32,9 1082,41 14,41
  Е   66,9 -32,9 1082,41 16,18
  Ж   72,5 -22,5 506,25 6,98
      64,5 22,5 506,25 7,85
  И   82,6 16,4 268,96 3,26
  К   73,4 -16,4 268,96 3,66
  Л   71,4 43,6 1900,96 26,62
  М   63,6 -43,6 1900,96 29,89
Суммы,         149,33

 

Критические значения χ2при v =5 нам уже известны:

Построим "ось значимости".

χ2эмп > χ2кр

Ответ: H0 отвергается. Принимается H1. Распределения реакций "надежды на успех" и "боязни неудачи" различаются между собой.

Теперь выясним, совпадают ли распределения реакций по каждой картине. Сформулируем гипотезы.

H0: Реакции двух видов в ответ на картину №1 (№2, №3... №6) распределяются равномерно.

H1: Реакции двух видов в ответ на картину №1 (№2, №3... №6) распределяются неравномерно.

Реакции "надежды на успех" будем обозначать как НУ, реакции "боязни неудачи" - как БН.

Подсчитаем теоретические частоты для каждой из шести картин, по формуле:

где n общее количество реакций обоих направлений на данную картину; k - количество разрядов, в данном случае количество видов реакции (k =2).

f1 теор =244/2=121;

f2 теор =282/2=141;

f3 теор =142/2=71;

f4 теор =137/2=68,5

f5 теор =156/2=78

f6 теор =135/2=67,5

В данном случае число степеней свободы v =l:

v = k —1=2—1=1.

Следовательно, мы должны сделать во всех шести случаях по­правку на непрерывность. Проведем расчеты отдельно для каждой кар­тины (см. Табл. 9.15).

Таблица 9.15

Расчет критерия χ2при сопоставлении распределений реакций на каж­дую из шести картин с равномерным распределением

 

Определим по Табл. IX Приложения 1 критические значения для v =l:

 

Ответ: H0 отклоняется для всех картин. H1принимается для картин 2, 3, 4, 5 и 6: реакции двух видов в ответ на эти картины рас­пределяются неравномерно.

Если представить данные графически (Рис. 9.2), то легко можно видеть, что картины №6, №3 и №5 вызывают достоверно больше реакций "надежды на успех", а картины №2, №1 и №4 - достоверно больше реакций "боязни неудачи".

Стимульный набор методики Х. Хекхаузена оказался неуравнове­шенным по направленности стимулирующего воздействия.

Рис. 9.2. Соотношения частот реакций "надежда на успех" (незаштрнхованные столбн-ки) н реакций "боязнь неудачи" (заштрихованные столбики) по разным картинам мето­дики Х.Хекхаузена

 

Вместе с тем, из Рис. 9.2 мы можем заметить, что если частоты реакций "боязни неудачи" достаточно монотонно возрастают при пере­ходе от картины №6 к картине №3, а затем к №5, №4, №1 и №2, то частоты реакций "надежда на успех" по всем картинам, за исключе­нием картины №4, оказываются примерно на одном уровне, в диапазо­не от 99 до 115. Каждый исследователь сам для себя решает вопрос о том, что для него важнее - абсолютные показатели стимулирующего воздействия или их соотношения. Метод у} поможет ему решить зада­чи и первого, и второго типа.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 519; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.