Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Распределение эмпирических данных




В психологических измерениях

Применение статистических методов

 

В каждой метрической шкале применяются определенные статистические методы. Параметрическая статистика применяется в интервальной и более мощных шкалах.

 

В ходе любого социального исследования, связанного с применением статистики и теории вероятностей, проводится изучение большого числа людей, их признакового пространства, для того чтобы сделать обобщения и типологические выводы относительно всей или части наблюдаемой популяции. Эта популяция в психометрии (и в других точных математических дисциплинах) называется генеральной совокупностью. Психолог не в состоянии изучить свойства всей популяции. Поэтому он работает с выборкой (частью популяции, группой), а выводы с учетом определенных процессуальных правил распространяет на всю генеральную совокупность. Таким образом, исследователь, изучая свойства относительно небольшой группы, получает знание о свойствах генеральной совокупности. Согласно теореме Бернулли «при бесконечном увеличении объема выборки эмпирическое распределение по вероятности стремится к распределению теоретическому»*.

Характеристики распределения генеральной совокупности называются параметрами, а характеристики выборочного распределения — оценками параметров. Для применения методов параметрической статистики осуществляется процедура определения вида статистического распределения эмпирических данных.

Метод наименьших квадратов в сочетании с гауссовским (нормальным) распределением эмпирических данных служит основой классической статистики. Предположения о нормальном распределении данных имеют "модельный" характер. На деле они не могут выполняться абсолютно точно.

Статистические выводы, составленные на основе модели, приближенной к нормальному распределению, также имеют более или менее приближенный характер. Оценка "приближенности" практической кривой к параметрам нормали** осуществляется при помощи расчета а) асимметрии и эксцесса и б) критериев согласия Пирсона (Хи-квадрат), Колмогорова (1933) и Ястремского (1949). В первом случае оценивается положение вершины практической кривой относительно теоретической, во втором — определенных "участков" (групп частот) практической кривой относительно теоретической нормали.

Коэффициент асимметрии (As) показывает величину смещения вершины эмпирической кривой относительно расчетной вершины по горизонтали (вправо "+"; влево "-"). Коэффициент эксцесса (Ex) определяет "крутизну" практической кривой (то есть смещение по вертикали — вверх "+"; вниз "-") (рис. 6).

Коэффициент асимметрии рассчитывается по следующим формулам:

 

1) As = 1 /(nG3)*[ ∑xi3 — ∑ xi/n (3∑ xi2 — 2 ((∑xi)2/n) ], [2]

 

где n — количество испытуемых, подвергнутых процедуре тестирования;

 

 

G = √ [∑xi 2 — (∑ xi)2 / n]/(n — 1),

 

где xi — конкретный тестовый балл i-го тестируемого.

 

 


Ех

 

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 666; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.