КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
По группам акцентуаций характера
Частотное распределение психографических признаков
В результате расчетов получены следующие величины коэффициента согласия Пирсона: χ2 1— 2 = 64.5; χ21— 3 = 96.5; χ22— 3 = 152. Для определения значимости различий между выборками 1 и 2 необходимо войти в таблицу вероятностей Р для критерия χ2 (Пирсона) (табл. 7). Число k (число степеней свободы) определяется с учетом количества переменных и в нашем случае равно 17 (по горизонтали), а χ2 равен 64.8 (по вертикали). При интерполяции табличных данных видно, что вероятность совпадения первого и второго распределений составляет менее 0.01*. Таблица 7 Таблица вероятностей Р для критерия χ2 (Пирсона)**
Вывод: частотные характеристики двух совокупностей (1 и 2) не имеют статистически значимой связи. Аналогично рассчитываются характеристики остальных совокупностей переменных.
6) Для определения статистической связи переменных, измеренных в дихотомической шкале наименований, используются коэффициенты контингенции (Q) и ассоциации (Ф).
Q = (ad — bc) /(ad + bc); [10] Ф = (ad — bc)/ √ (a+b)(c+d)(a+c)(b+d). [11]
Вычисление значений a, b, c, и d осуществляется при помощи таблицы 8.
Таблица 8
Пределы изменения значений коэффициентов Q и Ф находятся в интервале от –1 до +1. Полученные в результате вычислений данные интерпретируются следующим образом: если значение Q и Ф равны 0, то связь отсутствует. Если значение Q и Ф по абсолютной величине больше 0.5, то связь между переменными сильная. Если менее 0.5 — слабая. Знак коэффициента показывает направление изменений признаков, то есть при «-» зависимость связей обратная, а при «+» — прямая*. Практическое задание. Рассчитать статистическую связь между технической и гуманитарной направленностью школьников, измеренных в дихотомической шкале наименований по данным ТАХ и ДДО**. Эмпирические данные по результатам психодиагностики представлены в таблице 9. Таблица 9
В результате проведенных расчетов получено: Q = (12 — 2)/(12 + 2) = 0.71; Ф = (12 — 2)/ √ (3+2)(1+4)(3+1)(2+4) = 0.41.
Интерпретация: признаки технической и гуманитарной направленности испытуемых, измеренные с помощью психологических методик ТАХ и ДДО, имеют сильную прямую статистическую связь (по данным Q); коэффициенты Q и Ф имеют разный уровень мощности. Так, коэффициент контингенции (Q) обладает меньшей мощностью, чем коэффициент ассоциации (Ф).
7) Для определения статистической связи переменных, измеренных в порядковой шкале, используют коэффициент ранговой корреляции Спирмена (Rs), который вычисляется по формуле: 6 * Σ (xi — yi)2 Rs = 1 —. [12] n (n2 — 1) Теоретическая интерпретация коэффициента ранговой корреляции Спирмена Rs идентична любой статистике из области измерения связей переменных. Если значение Rs более 0.5, то имеет место статистически сильная связь, если менее 0.5 — слабая. Положительные и отрицательные знаки показывают направленность связи (соответственно, прямая и обратная).
Практическое задание. Произвести расчет корреляционной связи показателей эффективности деятельности операторов и уровня их интеллекта (по IQ), измеренных в ранговой шкале (табл. 10):
Таблица 10
В результате расчетов получено: Rs = 0.97 (p < 0.05)*. Имеет место сильная положительная значимая на уровне (p < 0.05) связь переменных.
Дата добавления: 2015-06-04; Просмотров: 376; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |