Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Макс Гендель 24 страница




 

20.2. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ В НЕРВНОЙ СИСТЕМЕ

 

20.2.1. Дефицит торможения. Растормаживание

В покое и деятельном состоянии нейроны испытывают постоянные тормозные влияния. При возбуждении нейронов происходит ослабление тормозных процессов. Такое растормаживание является дозированным, оно контролируется и соответствует необходимому уровню активности нейрона, поэтому имеет физиологический характер.

При растормаживании, имеющем патологический характер, нейрон становится гиперактивным и выходит в той или иной степени из-под контроля. Патологическое растормаживание возникает при значительном и неконтролируемом дефиците торможения. Такое состояние имеет место в условиях прямого повреждения тормозных механизмов, при избирательном действии на них некоторых токсинов (например, столбнячного токсина, стрихнина).

Дефицит торможения и растормаживание имеют место в той или иной мере практически при всех формах патологии нервной системы, поэтому они относятся к типовым патологическим процессам в нервной системе. Дефицит торможения играет существенную роль в формировании и деятельности генераторов, лежащих в основе многих нервных расстройств.

 

20.2.2. Экспериментальные и клинические проявления растормаживания

Характерным экспериментальным синдромом растормаживания является децеребрационная ригидность. Она вызывается, по Шеррингтону, перерезкой ствола мозга между передним и задним четверохолмием. В этих условиях происходит выпадение тормозных влияний со стороны супраспинальных структур и особенно красных ядер и проявляются возбуждающие тонические влияния вестибулярных ядер Дейтерса на мотонейроны спинного мозга, особенно гамма-мотонейроны, которые в норме находятся под тормозным контролем со стороны красных ядер. Перерыв (например, путем перерезки задних корешков) расторможенной, патологически усиленной гамма-петли на уровне спинного мозга ведет к исчезновению ригидности соответствующих мышц. Поэтому данный вид децеребрационной ригидности называют также гамма-ригидностью (Р. Гранит).

При выпадении тормозных влияний растормаживаются и гиперактивируются прежде всего те нейроны, которые в норме находятся в состоянии тонического возбуждения. У человека и многих животных такими нейронами являются нейроны мышц, выполняющих антигравитационную функцию. Вследствие этого у децеребрированной кошки голова запрокидывается вверх, передние и задние лапы вытягиваются, хвост поднимается и т.п. У человека при выпадении моторных корковых влияний (например, после геморрагического инсульта) возникает спастическая флексорная установка верхней и экстензорная установка нижней конечностей (поза Вернике - Манна).

Целый ряд патологических рефлексов возникает в условиях выпадения влияний со стороны коры и подкорковых образований; эти рефлексы являются результатом растормаживания центров спинного или продолговатого мозга. Они представляют собой гиперболизированные неконтролируемые реакции, которые были нормальными в раннем постнатальном периоде и затем подавлены при развитии регулирующих влияний со стороны высших отделов ЦНС. К ним относятся рефлекс Бабинского (растопыривание пальцев ноги вместо их сгибания при раздражении подошвы), хватательный, сосательный и другие рефлексы.

При полном перерыве спинного мозга могут проявляться заложенные генетически и подавленные с возрастом спинальные автоматизмы в виде сравнительно координированных сгибательно-разгибательных движений конечностей. Если растормаживаются и гиперактивируются тормозные нейроны, то возникает патологически усиленный тормозной эффект, который может проявиться в виде угнетения и выпадения функции.

 

20.2.3. Денервационный синдром

Денервационный синдром представляет собой комплекс изменений, возникающих в постсинаптических нейронах, органах и тканях после выпадения нервных влияний на эти структуры. Денервированная структура (мышца, нейрон) приобретает повышенную чувствительность к физиологически активным веществам (закон Кеннона - Розенблюта). Основным проявлением денервационного синдрома в мышце является исчезновение концевой пластинки - зоны мышечного волокна, где сосредоточен весь его холинергический аппарат. Вместо нее появляются новые АХ-рецепторы на всем протяжении мышечного волокна, и в связи с этим происходит повышение общей чувствительности к АХ всего волокна (А.Г. Гинецинский, Н.М. Ашмарина). Этот эффект связан главным образом с выпадением трофических влияний с нерва. Другой характерный признак - фибриллярные подергивания денервированной мышцы. Этот эффект отражает реакцию мышечных денервированных волокон на поступающий к ним из разных сторонних источников АХ. Близок к этим проявлениям эффект Вюльпиана - Гейденгайна - тономоторное сокращение денервированной мышцы при раздражении нерва, выделяющего АХ, что в норме вызывает лишь сосудистые реакции.

При денервации в мышце и других тканях появляются свойства, присущие ранним, в частности, эмбриональным стадиям развития. Это явление возникает как результат патологического растормаживания супрессированных в норме генов и других процессов.

 

20.2.4. Деафферентация

Импульсация, поступающая в нейрон, из какого бы источника она ни исходила, является для нейрона афферентной. Выключение этой афферентации представляет собой деафферентацию нейрона. Последняя может быть обусловлена либо выпадением поступающей импульсации (при перерыве нервных путей, нарушении выделения нейромедиаторов пресинаптическими окончаниями), либо блокадой воспринимающих рецепторов на постсинаптическом нейроне (при действии токсинов, фармакологических средств и др.).

Многие явления при деафферентации нейрона представляют собой выражение денервационного синдрома. Полной деафферентации нейрона не происходит, так как нейроны ЦНС обладают огромным количеством афферентных входов. Тем не менее и при частичной деафферентации возникает повышение возбудимости нейрона или его отдельных участков и нарушение тормозных механизмов. В силу этого при деафферентации группа нейронов может приобрести свойства генератора.

В клинике под феноменом деафферентации имеют в виду синдромы, возникающие при выпадении афферентной стимуляции с периферии. Эти синдромы можно воспроизвести в эксперименте путем перерезки соответствующих задних корешков. Движения конечности, иннервируемой деафферентированными таким образом сегментами спинного мозга, становятся размашистыми, плохо координированными. Кроме того, такая конечность способна осуществлять спонтанные движения в такт с дыханием (феномен Орбели - Кунстман), что обусловлено растормаживанием и повышением возбудимости деафферентированных нейронов спинного мозга.

 

20.2.5. Спинальный шок

Спинальный шок возникает после перерыва спинного мозга и представляет собой глубокое, но обратимое угнетение двигательных и вегетативных рефлексов, осуществляющихся ниже перерыва. Угнетение рефлексов связано с выпадением активирующей стимуляции со стороны головного мозга. У лягушек, у которых зависимость спинного мозга от головного значительно меньшая, чем у высших животных, спинальный шок длится несколько минут, у человекообразных обезьян и человека - несколько месяцев.

У человека полная арефлексия после перерыва спинного мозга является начальной стадией полной параплегии. В дальнейшем происходит постепенное восстановление двигательных и вегетативных рефлексов. Вначале появляются сгибательные рефлексы пальцев, имеющие характер патологических рефлексов (рефлекс Бабинского и др.), после этого осуществляются более значительные и затем генерализованные спинальные рефлексы и движения типа спинальных автоматизмов.

 

20.2.6. Нарушение нервной трофики. Нейродистрофический процесс

Трофика клетки и дистрофический процесс. Трофика клетки - комплекс процессов, обеспечивающих ее жизнедеятельность и поддержание генетически заложенных свойств. Расстройство трофики представляет собой дистрофию, развивающиеся дистрофические изменения составляют дистрофический процесс.

Этиологические факторы, вызывающие дистрофию клетки, могут быть различной природы. Развитие же дистрофического процесса носит стандартный характер. Эта особенность связана с тем, что внутриклеточные процессы протекают в виде цепных реакций, имеющих определенную последовательность. Поэтому дистрофический процесс в клетке относится к числу типовых внутриклеточных патологических процессов (Г. Н. Крыжановский).

Дистрофический процесс может развиваться и на тканевом, и на органном уровне, и на уровне организма. В той или иной форме он возникает при всех видах патологии, играя роль вторичного или параллельно развивающегося неспецифического эндогенного повреждения, входящего в комплекс патогенетических механизмов данной формы патологии.

Нейродистрофический процесс. Это развивающееся нарушение трофики, которое обусловлено выпадением или изменением нервных влияний. Оно может возникать как в периферических тканях, так и в самой нервной системе. Выпадение нервных влияний заключается: 1) в прекращении функциональной стимуляции иннервируемой структуры в связи с нарушением выделения или действия нейромедиатора; 2) в нарушении секреции или действия комедиаторов - веществ, которые выделяются вместе с нейромедиаторами и играют роль нейромодуляторов, обеспечивающих регуляцию рецепторных, мембранных и метаболических процессов; 3) в нарушении выделения и действия трофогенов. Трофогены (трофины) - вещества различной, преимущественно белковой природы, осуществляющие собственно трофические эффекты поддержания жизнедеятельности и генетически заложенных свойств клетки. Источником трофогенов являются: 1) нейроны, из которых трофогены поступают с ортоградным аксоплазматическим током в клетки-реципиенты (другие нейроны или иннервируемые ткани на периферии); 2) клетки периферических тканей, из которых трофогены поступают по нервам с ретроградным аксоплазматическим током в нейроны (рис. 186); 3) глиальные и шванновские клетки, которые обмениваютсяс нейронами и их отростками трофическими веществами. Вещества, играющие роль трофогенов, образуются также из сывороточных и иммунных белков. Трофическое воздействие могут оказывать некоторые гормоны. В регуляции трофических процессов принимают участие пептиды, ганглиозиды, некоторые нейромедиаторы.

К нормотрофогенам относятся различного рода белки, способствующие росту, дифференцировке и выживанию нейронов и соматических клеток, сохранению их структурного гомеостаза (например, фактор роста нервов).

В условиях патологии в нервной системе возникают трофические вещества, индуцирующие устойчивые патологические изменения клеток-реципиентов (патотрофогены, по Г. Н. Крыжановскому). Такие вещества синтезируются, например, в эпилептических нейронах - поступая с аксоплазматическим током в другие нейроны, они могут индуцировать у этих нейронов-реципиентов эпилептические свойства. Патотрофогены могут распространяться по нервной системе, как по трофической сети, что является одним из механизмов распространения патологического процесса. Патотрофогены образуются и в других тканях.

Дистрофический процесс в денервированной мышце. Синтезируемые в теле нейрона и транспортируемые в терминаль с аксоплазматическим током вещества, как и вещества, образующиеся в терминали, выделяются нервным окончанием и поступают в мышечные волокна (см. рис. 186), выполняя функцию трофогенов. Эффектынейротрофогенов видны из опытов с перерезкой двигательного нерва - чем выше произведена перерезка, т.е. чем больше сохранилось трофогенов в периферическом отрезке нерва, тем позднее наступает денервационный синдром. Нейрон вместе с иннервируемой им структурой (например, мышечным волокном) образует регионарный трофический контур, или регионарную трофическую систему (рис. 186). Если осуществить перекрестную реиннервацию мышц с разными исходными структурно-функциональными характеристиками (реиннервация «медленных» мышц волокнами от нейронов, иннервировавших «быстрые» мышцы, и наоборот), то реиннервированная мышца приобретает в значительной мере новые динамические характеристики: «медленная» становится «быстрой», «быстрая» - «медленной».

В денервированном мышечном волокне возникают новые трофогены, которые активируют разрастание нервных волокон (sprouting). Указанные явления исчезают после реиннервации.

Нейродистрофический процесс в других тканях. Взаимные трофические влияния существуют между каждой тканью и ее нервным аппаратом. При перерезке афферентных нервов возникают дистрофические изменения кожи. Перерезка седалищного нерва, который является смешанным (чувствительным и двигательным), вызывает образование дистрофической язвы в области скакательного сустава (рис. 187). С течением времени язва может увеличиться в размерах и охватить всю стопу.

Классический опыт Ф. Мажанди (1824), послуживший началом разработки всей проблемы нервной трофики, заключается в перерезке у кролика первой ветви тройничного нерва. В результате такой операции развивается язвенный кератит, вокруг язвы возникает воспаление и в роговицу врастают со стороны лимба сосуды, которые в норме в роговице отсутствуют. Врастание сосудов является выражением патологического растормаживания сосудистых элементов - в дистрофически измененной роговице исчезает фактор, который тормозит в норме рост в нее сосудов, и появляется фактор, который активирует этот рост.

Дополнительные факторы нейродистрофического процесса. К факторам, участвующим в развитии нейродистрофического процесса, относятся: сосудистые изменения в тканях, нарушения гемо- и лимфомикроциркуляции, патологическая проницаемость сосудистой стенки, нарушение транспорта в клетку питательных и пластических веществ. Важным патогенетическим звеном является возникновение в дистрофической ткани новых антигенов в результате изменений генетического аппарата и синтеза белка, образуются антитела к тканевым антигенам, возникают аутоиммунный и воспалительный процессы. В указанный комплекс патологических процессов входят также вторичное инфицирование язвы, развитие инфекционных повреждений и воспаления. В целом нейродистрофические поражения тканей имеют сложный многофакторный патогенез (Н. Н. Зайко).

Генерализованный нейродистрофический процесс. При повреждениях НС могут возникать генерализованные формы нейродистрофического процесса. Одна из них проявляется в виде поражения десен (язвы, афтозный стоматит), выпадения зубов, кровоизлияния в легких, эрозии слизистой и кровоизлияния в желудке (чаще в области привратника), в кишечнике, особенно в области буагиниевой заслонки, в прямой кишке. Поскольку такие изменения возникают сравнительно регулярно и могут иметь место при разных хронических нервных повреждениях, они получили название стандартной формы нервной дистрофии (А. Д. Сперанский). Весьма часто указанные изменения возникают при повреждении высших вегетативных центров, в частности гипоталамуса (при травмах, опухолях), в эксперименте при наложении стеклянного шарика на турецкое седло.

Трофическая иннервация и трофические системы. Все нервы (двигательные, чувствительные, вегетативные, внутрицентральные нервные связи) осуществляют непосредственные трофические взаимодействия с иннервируемым ими субстратом (периферические ткани, постсинаптические нейроны). Поэтому каждый нерв, какую бы функцию он ни выполнял, является одновременно трофическим (А. Д. Сперанский). Наряду с этим существует и специальная иннервация (усиливающие нервы, по И. П. Павлову; адаптационно-трофическая симпатическая нер-вная система, по Л. А. Орбели), возникшая в процессе эволюционного развития, которая регулирует в соответствии с текущими потребностями метаболизм органа, его энергетические и трофико-пластические процессы, усиливает при необходимости эти процессы и способствует быстрейшему восстановлению трофического и энергетического потенциала органа при его функционировании.

Нервная система в целом, благодаря многочисленным и разнообразным нейрональным связям, представляет собой трофическую сеть. По этой сети распространяются также патогенные факторы эндогенной (патотрофогены, антитела к нервной ткани и нейромедиаторам) и экзогенной (токсины, вирусы) природы. В теснейшем трофическом взаимодействии функционируют все главные интегративные системы организма - нервная, эндокринная, иммунная. Наряду с этим периферические ткани, находясь под трофическим контролем, сами оказывают трофическое влияние на нервную и другие интегративные системы. Таким образом, существует единая трофическая система организма (Г.Н. Крыжановский). Первичные нарушения в каком-либо звене этой системы влекут за собой изменения и в других звеньях.

Нарушения нервной трофики составляют важное патогенетическое звено болезней нервной системы и нервной регуляции соматических органов, поэтому коррекция трофических изменений является необходимой частью комплексной патогенетической терапии.

 

20.3. ПАТОЛОГИЯ НЕЙРОНА

 

20.3.1. Нарушение проведения возбуждения

Распространение возбуждения по нервному волокну обеспечивается последовательным сочетанием одних и тех же процессов: деполяризацией участка мембраны волокна > входом в этом участкеNa+> деполяризацией соседнего участка мембраны > входом в этом участке Na+ и т.д.

При недостаточном входе Na+нарушается генерация распространяющегося потенциала действия и проведение прекращается. Такой эффект имеет место при блокаде Na+-каналов местными анестетиками (новокаин, лидокаин и др.) и рядом других химических агентов. Специфическим блокатором Na+-каналов является тетродотоксин - яд, вырабатывающийся во внутренних органах рыбы фугу. Блокирование проведения возбуждения вызывают также вещества, нарушающие процесс реполяризации мембраны, связанный с закрыванием Na+-кaнaлoв. К ним относятся инсектициды (например, ДДТ), вератридин, аконитин, батрахотоксин и др.

Исходная разность концентрации ионов Na+ и К+ по обе стороны мембраны (Na+ в 10-15 раз больше снаружи, К+в 50-70 раз больше внутри), необходимая для генерации потенциала действия, восстанавливается и поддерживается активным транспортом ионов Na+-, K+-нacocoм. Он выкачивает наружу Na+, поступивший внутрь (в цитоплазму) во время возбуждения, в обмен на наружный К+, который вышел наружу во время возбуждения. Деятельность насоса, роль которого выполняет встроенная в мембрану Na+-, K+-АТФаза, обеспечивается энергией, высвобождающейся при расщеплении АТФ. Дефицит энергии ведет к нарушению работы насоса, что обусловливает неспособность мембраны генерировать потенциал действия и проводить возбуждение. Такой эффект вызывают разобщители окислительного фосфорилирования (например, динитрофенол) и другие метаболические яды, а также ишемия и длительное охлаждение участка нерва. Ингибируют насос и, как следствие этого, нарушают проводимость сердечные гликозиды (например, уабаин, строфантин) при их применении в относительно больших дозах.

Проведение возбуждения по аксону нарушается при различных видах патологии периферических нервов и нервных волокон в ЦНС - при воспалительных процессах, рубцовых изменениях нерва, при сдавлении нервных волокон, при демиелинизации волокон (аллергические процессы, рассеянный склероз), при ожогах и др. Проведение возбуждения прекращается при дегенерации аксона.

 

20.3.2. Нарушение аксонального транспорта

Аксональный транспорт из тела нейрона в нервное окончание и из нервного окончания в тело нейрона осуществляется при участии нейрофиламентов, микротрубочек и контрактильных актино- и миозиноподобных белков, сокращение которых зависит от содержания Са2+в среде и от энергии расщепления АТФ. Вещества, разрушающие микротрубочки и нейрофиламенты (колхицин,винбластин и др.), недостаток АТФ, метаболические яды, создающие дефицит энергии (динитрофенол, цианиды), нарушают аксоток. Аксональный транспорт страдает при дегенерации аксона, вызываемой недостатком витамина B6и витамина B1) (болезнь бери-бери), промышленными ядами (например, акриламидом, гексахлорофосом), солями тяжелых металлов (например, свинца), фармакологическими препаратами (например, дисульфирамом), алкоголем, при диабете, при сдавлении нервов и при дистрофических повреждениях нейрона. При перерыве аксона возникает уоллеровская дегенерация (распад) его периферической части и ретроградная дегенерация центральной части. Эти процессы связаны с нарушением трофики в обеих частях аксона.

Расстройства аксонального транспорта трофогенов и веществ, необходимых для образования и выделения медиаторов нервным окончанием, обусловливают развитие дистрофических изменений нейронов и иннервируемых тканей и нарушение синаптических процессов. Распространение с аксональным транспортом патотрофогенов, антител к нервной ткани и к нейромедиаторам приводит к вовлечению в патологический процесс нейронов в соответствующих отделах ЦНС.

 

20.3.3. Патология дендритов

Дендриты и их шипики являются самыми ранимыми структурами нейрона. При старении шипики и ветви дендритов редуцируются, при некоторых дегенеративных и атрофических заболеваниях мозга (старческое слабоумие, болезнь Альцгеймера) они не выявляются. Дендро-шипиковый аппарат страдает при гипоксии, ишемии, сотрясении мозга, стрессорных и невротизирующих воздействиях. Патология дендритов связана также с нарушением их микротрубочек, которые исчезают при действии различных патогенных агентов.

 

20.3.4. Патология нейрональных мембран

Повреждения как клеточной (цитоплазматической), так и внутриклеточных мембран возникают при различных патогенных воздействиях, и сами являются причиной дальнейшего развития патологии нейрона.

Усиленное перекисное окисление липидов (ПОЛ) нейрональных мембран оказывает влияние не только на мембранные, но и на другие внутриклеточные процессы.

Практически нет патологического процесса в нервной системе, при котором не возникало бы усиленного ПОЛ. Оно имеет место при эпилепсии, эндогенных психозах (например, шизофрении, маниакально-депрессивном синдроме), при неврозах, различного рода стрессах и повреждениях, при ишемии, хронической гипоксии, функ-циональных перегрузках нейронов и пр. С ним связана дальнейшая гиперактивация нейронов.

Вследствие увеличения проницаемости мембран происходит выход из нейрона различных веществ, в том числе антигенов, которые вызывают образование антинейрональных антител, что приводит к развитию аутоиммунного процесса. Нарушение барьерных свойств мембран обусловливает возрастание тока ионов Са2+и Na+ в нейрон и К+- из нейрона; эти процессы в сочетании с недостаточностью энергозависимых Na+-, K+- и Са2+-насосов (их деятельность изменяется также под влиянием усиленного ПОЛ) приводят к частичной деполяризации мембраны. Увеличенный вход Ca2+ не только вызывает гиперактивацию нейрона, но и при чрезмерном его содержании в клетке ведет к патологическим изменениям метаболизма и внутриклеточным повреждениям. Весь указанный комплекс процессов, если он не подавляется и не компенсируется, обусловливает гибель нейрона.

Нормализация ПОЛ и стабилизация нейрональных мембран должны быть частью комплексной патогенетической терапии различных форм патологии НС.

 

20.3.5. Энергетический дефицит

Потребность нейронов в энергообеспечении - самая высокая из всех клеток организма, и нарушение энергообеспечения является одной из распространенных причин патологии нейрона. Энергетический дефицит может быть первичным - при действии метаболических ядов (например, динитрофенола, цианидов), либо вторичным - при различных повреждениях, нарушениях кровообращения, шоке, отеке, общих судорогах, усиленной функциональной нагрузке и др. Дефицит энергии относится к разряду типовых внутриклеточных патологических процессов.

Главными условиями развития энергетического дефицита являются недостаток кислорода и значительное повреждение митохондрий, в которых синтезируется основной носитель энергии - АТФ. Причиной дефицита энергии может быть также недостаток субстрата окисления, в частности глюкозы, которая является для мозга основным субстратом окисления. Нейроны коры не имеют запасов глюкозы и потребляют ее непосредственно из крови (глюкоза свободно проходит ГЭБ), поэтому они особенно чувствительны к гипогликемии. Мозг потребляет около 20% от всей находящейся в крови глюкозы. Инсулиновые шоки, применяемые для лечения некоторых психозов, связаны с глубокой гипогликемией и протекают с потерей сознания и нередко с судорогами. При ряде патологических состояний (травматический шок, кровопотеря) мозг может дольше обеспечиваться кислородом и глюкозой благодаря перераспределению крови и уменьшению их потребления другими тканями. Для быстрейшего восстановления деятельности мозга после общих судорог необходим достаточно высокий уровень глюкозы в крови. Энергетический дефицит усугубляется нарушением цикла Кребса.

При глубоком нарушении окислительного фосфорилирования и синтеза макроэргов источником энергии становится анаэробный гликолиз. Он имеет характер компенсаторного механизма, однако его эффект не может восполнить дефицит энергии, а нарастающее увеличение содержания молочной кислоты в мозге оказывает отрицательное влияние на деятельность нейронов и усугубляет отек мозга.

 

20.3.6. Эффекты ишемии и гипоксии

В связи с высокой потребностью в энергии нейроны ЦНС нуждаются в значительном кислородном обеспечении. Нейрон коры головного мозга потребляет 250-450 мкл О2/мин (для сравнения - глиоцит и гепатоцит потребляют до 60 мкл О2 ). Снижение потребления кислорода мозгом всего лишь на 20% может вызвать потерю сознания у человека. Исчезновение импульсной активности нейронов возникает уже в первые десятки секунд ишемии мозга. Через 5-6 мин после начала асфиксии наступает глубокое и нередко необратимое нарушение деятельности мозга. Гибель нейрона при ишемии является результатом осуществления комплекса взаимосвязанных внутриклеточных процессов (схема 38).

При аноксии головного мозга в первую очередь страдает кора. Гибель всего мозга означает «мозговую смерть», которая проявляется в полном исчезновении биоэлектрической активности. При наступлении «мозговой смерти» согласно законодательству можно брать у погибшего внутренние органы для пересадки - они еще функционируют, так как более резистентны к аноксии, чем ЦНС. Филогенетически более старые структуры ЦНС (спинной мозг, ствол головного мозга) менее чувствительны к асфиксии, чем молодые (подкорка и особенно кора). Поэтому при запоздалом оживлении организма может наступить декортикация, «бескорковый» организм может существовать на искусственном дыхании.

Весьма чувствительны к аноксии тормозные механизмы. Одним из следствий этого является растормаживание неповрежденных структур ЦНС. На ранних стадиях ишемии, когда нейроны мозга еще способны давать реакцию, они могут гиперактивироваться. На поздних стадиях ишемии гиперактивация нейронов сменяется их инактивацией.

С входом Na+в нейрон связана первая, острая фаза поражения нейрона. Возрастание концентрации Na+в цитозоле нейрона приводит к повышению осмолярности, что обусловливает вход воды в нейрон и его набухание. В дальнейшем повышение осмолярности нейрона связано также с накоплением в нем Са2+, молочной кислоты, неорганического фосфора. С входом Са2+ в нейрон связана вторая фаза повреждения нейрона. Возросший вход Са2+ в нейрон обусловлен активацией глютаматных рецепторов в связи с усиленным выделением глютамата нервными окончаниями при ишемии. Антагонисты глютаматных рецепторов и антагонисты Са2+(блокаторы Са2+-каналов) способны предотвратить ишемическую дегенерацию нейронов и оказать лечебный эффект.

Повреждение нейрона происходит не только во время ишемии, но и после нее. Эти повреждения связаны с реперфузией мозга и возобновлением циркуляции крови, и именно они могут представлять главную опасность. Большую роль реперфузионных постишемических повреждениях играют: новая волна поступления Ca2+ в нейрон, перекисное окисление липидов и процессы свободнорадикального окисления, усиленные в связи с действием поступающего кислорода - возрастание содержания молочной кислоты в связи с поступлением глюкозы в условиях нарушения окислительного фосфорилирования и в связи с возросшим анаэробным гликолизом; происходит отек мозга за счет поступления воды из крови при возобновлении циркуляции.

Чрезмерное содержание Са2+в нейроне, с чем связано возникновение ишемической и постишемической дегенерации нейрона, обусловлено не только усиленным входом Ca2+, но и нарушением механизмов его внутриклеточного гомеостаза (рис. 188). В сложный комплекс Са2+-индуцируемых внутриклеточных повреждений входят: альтерация внутриклеточных белков, усиленный фосфолипазный гидролиз и протеолиз, разрушение внутриклеточных структур, повреждение цитоплазматической и внутриклеточных мембран, набухание нейронов, нарушение деятельности генома. При критическом возрастании интенсивности этих процессов происходят необратимые повреждения и гибель нейрона, возникает так называемая «кальциевая смерть»*.

На поздних стадиях патологического процесса, вызванного ишемией мозга, а также при хронизации процесса возникает новый комплекс вторичных изменений - дегенеративно-дистрофические процессы, нарушения энзимных и метаболических систем, сосудистые изменения, образование антител к мозговой ткани, аутоиммунная агрессия и др. Они составляют патогенетическую структуру постишемической энцефалопатии, которая может продолжать развиваться (прогредиентное развитие). Эти процессы, а также изменения в других системах и органах с их последствиями имеют место и после реанимации организма, особенно если она была затяжной и поздней. В своей совокупности они составляют патогенетическую структуру постреанимационной болезни (В.А. Неговский).




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 411; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.