КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. 1. Откройте новую рабочую таблицу
Решение 1. Откройте новую рабочую таблицу. Установите табличный курсор в ячейку А1. 2. Для определения границ доверительного интервала необходимо на панели инструментов Стандартная нажать кнопку Вставка функции (fx). В появившемся диалоговом окне Мастер функций выберите категорию Статистические и функцию ДОВЕРИТ, после чего нажмите кнопку ОК. 3. В рабочие поля появившегося диалогового окна ДОВЕРИТ с клавиатуры введите условия задачи; Альфа − 0,05; Станд-откл − 2,5; Размер −25 (рис. 1.11). Нажмите кнопку ОК. 4. В ячейке А1 появится полуширина 95%-ного доверительного интервала для среднего значения выборки — 0,979981. Другими словами, с 95%-ным уровнем надежности можно утверждать, что средняя продолжительность разряда аккумулятора составляет 140 ± 0,979981 часа или от 139,02 до 140,98 часа. Рис. 1.1. Пример заполнения диалогового окна «ДОВЕРИТ» Пример 1.1. Пусть имеется выборка, содержащая числовые значения: 13, 15, 17, 19,22,25,19. Необходимо определить границы 95%-ного доверительного интервала для среднего значения и для нахождения «выскакивающей» варианты. 1. В диапазон А1:А7 введите исходный ряд чисел. 2. Далее вызовите процедуру Описательная статистика. Для этого, указав курсором мыши на пункт меню Сервис, выберите команду Анализ данных. Затем в появившемся списке Инструменты анализа выберите строку Описательная статистика. 3. В появившемся диалоговом окне в рабочем поле Входной интервал: укажите входной диапазон − А 1:А7. Переключателем активизируйте Выходной интервал и укажите выходной диапазон — ячейку В1. В разделе Группировка переключатель установите в положение по столбцам. Установите флажок в левое поле Уровень надежности: и в правом поле (%) − 95. Затем нажмите кнопку ОК. 4. В результате анализа в указанном выходном диапазоне для доверительной вероятности 0,95 получаем значения доверительного интервала (рис. 1.12).
Рис. 1.12. Исходная выборка (А1:А7) и результат вычислений (СЗ) из примера 1.6
Уровень надежности − это половина доверительного интервала для генерального среднего арифметического. Из полученного результата следует, что с вероятностью 0,95 среднее арифметическое для генеральной совокупности находится в интервале 18,571 ± 3,77. Здесь 18,571 − выборочное среднее М для рассматриваемого примера, которое находится обычно процедурой Описательная статистика одновременно с доверительным интервалом. 5. Для нахождения доверительных границ для «выскакивающей» варианты необходимо полученный выше доверительный интервал умножить на (в примере , то есть 3,77* =9,975). В «MS Excel» это можно выполнить следующим образом. Табличный курсор установите в свободную ячейку С4; введите с клавиатуры знак =; мышью укажите на ячейку СЗ (в которой находится результат вычислений); введите с клавиатуры знак *; с панели инструментов Стандартная вызовите Мастер функций (кнопка fx); выберите категорию Математические, тип функции Корень; нажмите ОК; введите с клавиатуры число 7 и нажмите ОК. В результате получим в ячейке С4 значение доверительного интервала − 9,975. Таким образом, варианта, попадающая в интервал 18,571 ± 9,975, считается принадлежащей данной совокупности с вероятностью 0,95. Выходящая за эти границы может быть отброшена с уровнем значимости = 0,05. Проверка соответствия теоретическому распределению. Следующей задачей, возникающей при анализе одной выборки, является оценка меры соответствия (расхождения) полученных эмпирических данных и каких-либо теоретических распределений. Это связано с тем, что в большинстве случаев при решении реальных задач закон распределения и его параметры неизвестны. В то же время применяемые статистические методы в качестве предпосылок часто требуют определенного закона распределения. Наиболее часто проверяется предположение о нормальном распределении генеральной совокупности, поскольку большинство статистических процедур ориентировано на выборки, полученные из нормально распределенной генеральной совокупности. Для оценки соответствия имеющихся экспериментальных данных нормальному закону распределения обычно используют графический метод, выборочные параметры формы распределения и критерии согласия. Графический метод позволяет давать ориентировочную оценку расхождения или совпадений распределений (рис. 1.13). 56 57 58 59 60 61 62 63 64 65
Дата добавления: 2015-06-29; Просмотров: 621; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |