КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Анализ двух выборок
Упражнения 10. Определите, лежит ли значение 19 внутри границ 95%-ного доверительного интервала выборки 2, 3, 5, 7, 4, 9, 6,4, 9,10,4, 7, 19. 11. Определите с уровнем значимости = 0,05 максимальное отклонение среднего значения генеральной совокупности от среднего выборки 3, 4, 4, 2, 5, 3, 4, 3, 5, 4, 3, 5, 1. 12.Найдите соответствие экспериментальных данных нормальному закону распределения для следующей выборки весов детей (кг): 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 21, 21, 21, 21, 21, 21, 21, 21, 21, 26, 26, 26, 26, 26, 27, 27. Выявление достоверности различий. Следующей задачей статистического анализа, решаемой после определения основных выборочных характеристик и анализа одной выборки, является совместный анализ нескольких выборок. Важнейшим вопросом, возникающим при анализе двух выборок, является вопрос о наличии различий между этими выборками. Обычно для этого проводят проверку статистических гипотез о принадлежности обеих выборок одной генеральной совокупности или о равенстве генеральных средних. В рассмотренном ранее примере 1.3. такие различия выявляются путем сравнения данных реализации турфирмой путевок за периоды до и после начала активной рекламной компании. Если сопоставить средние значения числа реализованных за месяц путевок до (125,6) и после (145,7) начала рекламной компании, видно, что они различаются. Можно ли по этим данным сделать вывод об эффективности рекламной компании? Для решения задач такого типа используются так называемые критерии различия. Для проверки одной и той же гипотезы могут быть использованы разные статистические критерии. Правильный выбор критерия определяется как спецификой данных и проверяемых гипотез, так и уровнем статистической подготовки исследователя. Статистические критерии различия подразделяются на параметрические и непараметрические критерии. Параметрические критерии служат для проверки гипотез о параметрах определенных распределений генеральной совокупности (чаще всего нормального распределения). Непараметрические критерии для проверки гипотез не используют предположений о законе распределения генеральной совокупности и не требуют знания параметров распределения. Параметрические критерии. Параметрические критерии служат для проверки гипотез о положении и рассеивании. Из параметрических критериев наибольшей популярностью при проверке гипотез о равенстве генеральных средних (математических ожиданий) пользуется f-критерий Стьюдента (t-критерий различия). Критерий Стьюдента (t) наиболее часто используется для проверки гипотезы: «Средние двух выборок относятся к одной и той же совокупности». Критерий позволяет найти вероятность того, что оба средних относятся к одной и той же совокупности. Если эта вероятность р ниже уровня значимости (р < 0,05), то принято считать, что выборки относятся к двум разным совокупностям. При использовании t-критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух независимых, несвязанных выборок (так называемый двухвыборочный t-критерий). В этом случае есть контрольная группа и опытная группа, состоящие, например, из разных пациентов, количество которых в группах может быть различно. Во втором случае, когда одна и та же группа объектов порождает числовой материал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными. Например, измеряется содержание лейкоцитов у здоровых животных, а затем у тех же самых животных после облучения определенной дозой излучения. В обоих случаях в принципе должно выполняться требование нормальности распределения исследуемого признака в каждой из сравниваемых групп и равенства дисперсий в сравниваемых совокупностях. Однако на практике по большому счету корректное применение t-критерия Стьюдента для двух групп часто бывает затруднительно, поскольку достоверно проверить эти условия удается далеко не всегда. Для оценки достоверности отличий по критерию Стьюдента принимается нулевая гипотеза, что средние выборок равны между собой. Затем вычисляется значение вероятности того, что изучаемые события (например, количества реализованных путевок в обеих выборках) произошли случайным образом. В MS «MS Excel» для оценки достоверности отличий по критерию Стьюдента используются специальная функция «ТТЕСТ» и процедуры пакета анализа (см. раздел «Использование Пакета анализа для выявления различий» ниже). Все перечисленные инструменты вычисляют вероятность, соответствующую критерию Стьюдента, и используются, чтобы определить, насколько вероятно, что две выборки взяты из генеральных совокупностей, которые имеют одно и то же среднее. Функция «ТТЕСТ» использует следующие параметры: ТТЕСТ (массив1; массив2; хвосты; -тип). Здесь: О массив 1 − это первое множество данных; О массш2 − это второе множество данных; О хвосты − число хвостов распределения. Обычно число хвостов равно 2; О тип − это вид исполняемого t- теста. Возможны 3 варианта выбора: 1 − парный тест, 2 − двухвыборочный тест с равными дисперсиями, 3 − двухвыборочный тест с неравными дисперсиями.
Пример 1.8. Выявить, достоверны ли отличия при сравнении данных реализации турфирмой путевок за периоды до и после начала активной рекламной компании (см. пример 1.3).
Дата добавления: 2015-06-29; Просмотров: 1568; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |