КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. Рис. 1.13. Сопоставление выборочного распределения веса студенток и кривой нормального распределения
Вес Рис. 1.13. Сопоставление выборочного распределения веса студенток и кривой нормального распределения При большом числе наблюдений (n > 100) неплохие результаты дает вычисление выборочных параметров формы распределения: эксцесса и асимметрии (см. разделы «Использование специальных функций» и «Использование инструментов Пакета анализа»). Принято говорить, что предположение о нормальности распределения не противоречит имеющимся данным, если асимметрия близка к нулю, то есть лежит в диапазоне от -0,2 до 0,2, а эксцесс − от 2 до 4. Наиболее убедительные результаты дает использование критериев согласия. Критериями согласия называют статистические критерии, предназначенные для проверки согласия опытных данных и теоретической модели. Здесь нулевая гипотеза Н0 представляет собой утверждение о том, что распределение генеральной совокупности, из которой получена выборка, не отличается от нормального. Среди критериев согласия большое распространение получил непараметрический критерий (хи-квадрат). Он основан на сравнении эмпирических частот интервалов группировки с теоретическими (ожидаемыми) частотами, рассчитанными по формулам нормального распределения. Отметим, что сколько-нибудь уверенно о нормальности закона распределения можно судить, если имеется не менее 50 результатов наблюдений. В случаях меньшего числа данных можно говорить только о том, что данные не противоречат нормальному закону, и в этом случае обычно используют графические методы оценки соответствия. При большем числе наблюдений целесообразно совместное использование графических и статистических (например, тест хи-квадрат или аналогичные) методов оценки, естественно дополняющих друг друга. Использование критерия согласия хи-квадрат. Для применения критерия желательно, чтобы объем выборки п > 40, выборочные данные были сгруппированы в интервальный ряд с числом интервалов не менее 7, а в каждом интервале находилось не менее 5 наблюдений (частот). Отметим, что сравниваться должны именно абсолютные частоты, а не относительные (частоты). При этом, как и любой другой статистический критерий, критерий хи-квадрат не доказывает справедливость нулевой гипотезы (соответствие эмпирического распределения нормальному), а лишь может позволить ее отвергнуть с определенной вероятностью (уровнем значимости). В MS «MS Excel» критерий хи-квадрат реализован в функции ХИ2ТЕСТ. Функция ХИ2-ТЕСТ вычисляет вероятность совпадения наблюдаемых (фактических) значений и теоретических (гипотетических) значений. Если вычисленная вероятность ниже уровня значимости (0,05), то нулевая гипотеза отвергается и утверждается, что наблюдаемые значения не соответствуют нормальному закону распределения. Если вычисленная вероятность близка к 1, то можно говорить о высокой степени соответствия экспериментальных данных нормальному закону распределения. Функция имеет следующие параметры: ХИ2ТЕСТ (фактический_интервал;ожидаемый_интервал). Здесь: О фактический_интервал − это интервал данных, которые содержат наблюдения, подлежащие сравнению с ожидаемыми значениями; О ожидаемый интервал − это интервал данных, который содержит теоретические (ожидаемые) значения для соответствующих наблюдаемых.
Пример 1.7. Проверить соответствие выборочных данных из примера 1.1. (64, 57, 63,62,58, 61, 63, 60, 60,61,65,62, 62, 60, 64, 61,59,59, 63,61, 62,58, 58, 63, 61, 59, 62, 60,60,58,61,60,63,63,58,60,59,60,59,61,62,62,63,57,61,58,60,64,60,59,61,64, 62, 59, 65) нормальному закону распределения.
1. Повторите пункты 1-7 решения примера 1.1. В результате получится таблица (см. рис. 1.2). 2. Найдите теоретические частоты нормального распределения. Для этого предварительно необходимо найти среднее значение и стандартное отклонение выборки. В ячейке I13 с помощью функции СРЗНАЧ найдите среднее значение для данных из диапазона А2:Е12 (60,855). В ячейке J1З с помощью функции СТАНД0ТКЛ0Н найдите стандартное отклонение для этих же данных (2,05). В ячейки К1 и К2 введите название столбца − Теоретические частости. Затем с помощью функции НОРМ-РАСП найдите теоретические частости. Установите курсор в ячейку К4, вызовите указанную функцию и заполните ее рабочие поля: х − G4; Среднее − $1$13; Стан-дартное_откл − $J$13; Интегральный − 0. Получим в ячейке К4 0,033. Далее протягиванием скопируйте содержимое ячейки К4 в диапазон ячеек К5:К12. Затем в ячейки L1 и L2 введите название нового столбца − Теоретические частоты. Установите курсор в ячейку L4 и введите формулу =Н$13*К4. Далее протягиванием скопируйте содержимое ячейки L4 в диапазон ячеек L5:L12. Результаты вычислений представлены на рис. 1.14.
Рис. 1.14. Результаты вычисления теоретических частостей и частот из примера 1.7 С помощью функции ХИ2ТЕСТ определите соответствие данных нормальному закону распределения. Для этого установите табличный курсор в свободную ячейку L13. На панели инструментов Стандартная нажмите кнопку Вставка функции (fx). В появившемся диалоговом окне Мастер функций выберите категорию Статистические и функцию ХИ2ТЕСТ, после чего нажмите кнопку ОК. Появившееся диалоговое окно ХИ2ТЕСТ отодвиньте вправо на 1-2 см от данных. Указателем мыши в рабочие поля введите фактический Н4:Н12 и ожидаемые L4:L12 диапазоны частот (рис. 1.15). Нажмите кнопку ОК. В ячейке L13 появится значение вероятности того, что выборочные данные соответствуют нормальному закону распределения − 0,9842.
Рис. 1.15. Пример заполнения рабочих полей функции ХИ2ТЕСТ 4. Поскольку полученная вероятность соответствия экспериментальных данных р = 0,98 много больше, чем уровень значимости = 0,05, то можно утверждать, что нулевая гипотеза не может быть отвергнута и, следовательно, данные не противоречат нормальному закону распределения. Более того, поскольку полученная вероятность р = 0,98 близка к 1, можно говорить о высокой степени вероятности того, что экспериментальные данные соответствуют нормальному закону.
Дата добавления: 2015-06-29; Просмотров: 1004; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |