КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сходимость числовых положительных рядов Необходимый признак сходимости ряда
Одной из ключевых задач теории числовых рядов является исследование ряда на сходимость. При этом возможны два случая: 1) Ряд расходится. Это значит, что бесконечная сумма равна бесконечности: . Хороший пример расходящегося числового ряда встретился в начале урока: . Здесь совершенно очевидно, что каждый следующий член ряда – больше, чем предыдущий, поэтому и, значит, ряд расходится. Чуть ниже мы рассмотрим более строгий математический критерий для данного примера. 2) Ряд сходится. Это значит, что бесконечная сумма равна некоторому конечному числу : . В качестве примера сходящегося числового ряда можно привести бесконечно убывающую геометрическую прогрессию, известную нам со школы: . Сумму членов бесконечно убывающей геометрической прогрессии можно найти по формуле: , где – первый член прогрессии, – основание прогрессии. В данном случае: , . Таким образом: Получено конечное число, значит, ряд сходится, что и требовалось доказать. В подавляющем большинстве случаев найти сумму ряда затруднительно, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически. Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши, некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда , образно говоря – от «начинки» ряда. На этом уроке мы рассмотрим необходимый признак сходимости ряда и признаки сравнения. ! Для дальнейшего усвоения урока необходимо хорошо понимать, что такое предел и хорошо уметь раскрывать неопределенность вида . Для повторения материала обратитесь к статье Пределы. Примеры решений.
Дата добавления: 2015-07-02; Просмотров: 665; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |