КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Если общий член ряда не стремится к нулю, то ряд расходится
Необходимый признак сходимости ряда Я не буду записывать сам признак (его можно найти в любом учебнике), а сформулирую очевидное следствие: Или короче: Если , то ряд расходится. В качестве «динамической» переменной вместо «икса» у нас выступает . Букву можно заменить другой буквой, и это не страшно, однако есть разница с содержательной точки зрения. Освежим наши знания: пределы с «иксом» называют пределами функций, а пределы с переменной «эн» – пределами числовых последовательностей. Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но данный факт мало сказывается на методах решения пределов и способах раскрытия неопределенностей. Докажем, что ряд из первого примера расходится. Необходимый признак сходимости ряда довольно часто встречается в практических заданиях: Пример 6 Исследовать ряд на сходимость В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений, наверняка уловил, что когда старшие степени числителя и знаменателя равны, тогда предел равен конечному числу. Решаем: Готово. Пример 7 Исследовать ряд на сходимость Это пример для самостоятельного решения. Полное решение и ответ в конце урока Итак, когда нам дан ЛЮБОЙ ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли общий член к нулю? Если не стремится – оформляем решение по образцу примеров №№6,7 и даём ответ о том, что ряд расходится. Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров №№6,7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя. Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда. Почему признак называется необходимым? Потому-что, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится. Или так: для того, чтобы ряд сходился, необходимо, чтобы его общий член стремился к нулю; но этого еще – не достаточно. Если общий член ряда стремится к нулю, то ряд может, как сходиться, так и расходиться! В таких случаях для решения примеров нужно использовать другие признаки. Знакомьтесь: Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится. Также следует запомнить понятие обобщенного гармонического ряда: Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .
Дата добавления: 2015-07-02; Просмотров: 2752; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |