КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Обтекание шара стационарным потоком
Пусть поток жидкости движется с постоянной скоростью вдоль оси OZ. Потенциал поля скоростей невозмущенного потока (в отсутствие шара) определим выражением:
Если в жидкости находится шар радиуса а, центр которого совпадает с началом координат, то он возмущает поток жидкости. Будем считать возмущенный поток установившимся и безвихревым. В этом случае потенциал поля скоростей может быть представлен в виде суммы:
где
Предположим, что возмущение потенциала скорости шаром пренебрежимо мало на больших расстояниях, так что
Предполагая, что возмущенное течение жидкости также как и движение невозмущенного потока является аксиально-симметричным, для потенциала возмущения получим уравнение (в сферических координатах)
Решение уравнения методом разделения переменных
приводит к следующему уравнению для угловой части:
где С - константа разделения переменных. Решение будет регулярным при
Соответственно, радиальное уравнение для возмущения имеет вид
и его решение может быть получено подстановкой
а константа А определяется из условия на поверхности шара
и равна
а также поле возмущения вектора скорости (в сферических координатах)
Это позволяет определить распределение давления на поверхности шара
где Так как распределение давления симметрично относительно экваториальной плоскости
Выполняя интегрирование по всей поверхности сферы, получим
Этот эффект называется парадоксом Даламбера.
В системе отсчета, где жидкость покоится, шар движется с постоянной скоростью. Интерпретация парадокса Даламбера в этой системе сводится к утверждению, что идеальная несжимаемая жидкость (при потенциальном обтекании) не оказывает сопротивления движущемуся шару.
Дата добавления: 2015-06-28; Просмотров: 784; Нарушение авторских прав?; Мы поможем в написании вашей работы! |