Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод обратных лучей




Тень, падающая от одной фигуры на другую

 

 

.

7.3. Тень, падающая от одной фигуры на другую

Метод обратных лучей успешно применяется при построении теней, падающих от одной геометрической фигуры на другую, и характеризуется следующими построениями:

а) строятся тени, падающие от обеих заданных фигур на какую-либо плоскость;

б) выявляются точки пересечения теней от двух линий, из которых одна принадлежит контуру первой фигуры, а другая — контуру второй;

в) при помощи обратных лучей (то есть лучей, параллельных лучам света, но имеющих обратное направление) “возвращаются” эти точки в пространство (на соответствующие контурные линии фигур);

г) с помощью полученных точек определяется искомая тень, падающая от одной фигуры на другую.

 

 

ПРИМЕР.

На рис. 86 показано применение метода обратных лучей на

примере построения падающей тени от прямой на плоскость треугольника.

Рис. 86

Построены падающие тени от треугольника АВС и от прямой ED на плоскость Н. Через точки М T' и М T', общие теням прямой ED и сторонам АВ и ВС, проведены обратные лучи, пересекающие указанные прямые соответственно в точках М', М'', К' и K''. Точки М' и K' представляют собой тени от точек M'' и K'' прямой ЕD на стороны АВ и ВС. Искомая же тень будет определена точками M'K'.

На рис. 87 приведено решение этой задачи в ортогональных проекциях.

.

Рис. 87

 

2. Метод следа светового луча
(метод сечения лучевой плоскостью)

Метод следа луча основан на том, что тень, падающая от точки, есть след проведенного через нее луча.

На рисунке 88 приведено решение задачи на построение тени от прямой АВ на плоскость Q (CDEF) в ортогональных проекциях методом следа луча (или сечения лучевой плоскости).

Рис. 88

В данном случае тень от прямой АВ на плоскость Q построена с помощью двух точек А TQ(А TQ', А TQ'') и В TQ(В TQ', В TQ''), в которых пересекаются с плоскостью Q(CDEF) соответственно данная прямая и световой луч, проходящий через точку В.

Плоскость b ^ H является лучевой плоскостью, которая проводится через луч ВВ TQ для определения точки В TQ(В TQ', В TQ'').




Поделиться с друзьями:


Дата добавления: 2015-06-29; Просмотров: 1621; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.