Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Опыты Джермера-Дэвиссона и Томсона при дифракции электронов




Дэвиссон и Джермер исследовали дифракцию электронов на монокристалле никеля, кристалическая структура которого была известна из опытов по дифракции рентгеновских лучей.

В случае монохроматических рентгеновских лучей длину волны во время опыта сохраняют постоянной. На опыте меняют угол скольжения и замечают, при каком значении наступает интерфериционное отражение. В случае волн де Бройля значительно удобнее сохранять угол неизменным, добиваясь интерфереционного отражения путем изменения ускоряющего напряжения. Проводилось исследование отражения электронов от монокристалла никеля. Установка включала в себя монокристалл никеля, сошлифованный под углом и установленный на держателе. На плоскость шлифа направлялся перпендикулярно пучокмонохроматических электронов. Скорость электронов определялась напряжением на электронной пушке:

Под углом к падающему пучку электронов устанавливался цилиндр Фарадея, соединённый с чувствительным гальванометром. По показаниям гальванометра определялась интенсивность отражённого от кристалла электронного пучка. Вся установка находилась в вакууме.

В опытах измерялась интенсивность рассеянного кристаллом электронного пучка в зависимости от угла рассеяния от азимутального угла , от скорости электронов в пучке.

Опыты показали, что имеется ярко выраженная селективность (выборочность) рассеяния электронов. При различных значениях углов и скоростей, в отражённых лучах наблюдаются максимумы и минимумы интенсивности. Условие максимума:

Здесь — межплоскостное расстояние.

Таким образом наблюдалась дифракция электронов на кристаллической решётке монокристалла. Опыт явился блестящим подтверждением существования у микрочастиц волновых свойств.

Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку большой совокупности электронов, но и каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 году советском физику В. А. Фабриканту. Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 104 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности.

Впоследствии дифракционные явления обнаружили также для нейтронов, протонов, атомных и молекулярных пучков. Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описывать движение микрочастиц в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой по формуле де Бройля. Открытие волновых свойств микрочастиц привело к появлению и развитию новых методов исследования структуры веществ, таких, как электронография и нейтронография, а также к возникновению новой отрасли науки — электронной оптики.

 

Томсон пропускал тонкий монохроматический пучок быстрых электронов сквозь поликристаллическую фольгу толщиной см. На фотопластинке, поставленной за фольгой, получилось центральное пятно, окруженное дифракционными кольцами. Опыт Томсона–Тартаковского по дифракции электронов

Другой опыт, подтвердивший волновые свойства материальных частиц, был проведен в 1928 году Джорджем Паджетом Томсоном (1892–1975), а также независимо за год до него Петром Савичем Тартаковским (1895–1940). В нем использовалась еще одна техника, развитая прежде в рентгеноструктурном анализе, а именно, метод Дебая–Шерера. В этом методе используется уже поликристаллическая пластинка L, через которую пропускают электронный пучок высокой энергии и затем наблюдают дифракционную картину на стоящей за поликристаллом фотопластинке P (см. рис. ниже). В отличие от монокристалла, использовавшегося в эксперименте Дэвиссона–Джермера, поликристалл состоит из маленьких кристалликов, внутри которых имеет место строгий порядок; сами же кристаллики расположены беспорядочно друг по отношению к другу.

Если бы не было дифракционных эффектов, кристаллики рассеивали бы свет во всех стороны. Однако, условие Брэгга–Вульфа (см. предыдущий вопрос) говорит, что отражение электронного пучка от грани кристаллика происходит тогда, когда угол между падающим пучком и нормали к отражающей грани удовлетворяет соотношению:

Угол, на который в результате рассеивается падающий пучок, составляет . В итоге множеством всевозможно ориентированных кристалликов падающий пучок рассеивается в несколько конусов с углами раствора

При этом дифракционная картина имеет вид концентрических окружностей (см. рис.). Данное явление было хорошо изучено в случае рентгеновского излучения, а Томсон и Тартаковский исследовали случай пучка электронов.

Томсон использовал электроны гораздо более высоких энергий, чем Дэвиссон и Джермер, чтобы на пластинке уместилось хотя бы несколько дифракционных кругов и чтобы заметная часть пучка прошла через поликристалл (для электронов низких энергий он становится практически непрозрачным). Действительно, даже для электронов с энергией, равной десяткам кЭв, поликристаллическая пластинка подбиралась очень тонкой — всего лишь десятые и сотые доли микрометра! Это в десятки-сотни раз меньше длины волны видимого света. Монохроматический пучок таких электронов обладал длиной волны менее ангстрема, благодаря чему наблюдалась желаемая дифракция. Далее, аналогично опыту Дэвиссона–Джермера, исследовалась зависимость длины волны электрона от их кинетической энергии. Кроме того, полученное из измерения радиусов дифракционных колец расстояние между кристаллическими плоскостями частиц поликристалла сравнивалось с результатами опытов с рентгеновскими лучами. Результаты совпали, что говорило в пользу единства свойств пучка электронов и электромагнитной волны высокой частоты.




Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 3821; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.