Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интегрирование ЛОДУ второго порядка с постоянными коэффициентами




Интегрирование ДУ второго порядка с постоянными коэффициентами

Лекция № 5

 

Частным случаем рассмотренных выше линейных однородных дифференциальных уравнений являются ЛОДУ с постоянными коэффициентами.

Пусть дано ЛОДУ второго порядка

где р и q постоянны.

Для нахождения общего решения уравнения (4.1) достаточно найти два его частных решения, образующих фундаментальную систему (см. теорему 3.5).

Будем искать частные решения уравнения (4.1) в виде где k - некоторое число (предложено Л. Эйлером).

Дифференцируя эту функцию два раза и подставляя выражения для у, у' и у" в уравнение (4.1), получим:

Уравнение (4.2) называется характеристическим уравнением ДУ (4.1)

(для его составления достаточно в уравнении (4.1) заменить у", у' и у соответственно на k2, k и 1).

При решении характеристического уравнения (4.2) возможны следующие три случая.

Случай 1. Корни k1 и k2 уравнения (4.2) действительные и различные:

В этом случае частными решениями уравнения (4.1) являются функции y1=ek1x и у2k2x. Они образуют фундаментальную систему решений (линейно независимы), т. к. их вронскиан

Следовательно, общее решение уравнения (4.1), согласно формуле (3.16), имеет вид

Пример 4.1. Решить уравнение

Решение: Составим характеристическое уравнение: Решаем его: k1=2, k2=3. Записываем общее решение данного уравнения: где c1 и с2 - произвольные постоянные (формула (4.3)).

Случай 2. Корни k1 и k2 характеристического уравнения (4.2) действительные и равные:

В этом случае имеем лишь одно частное решение y1=ek1x. Покажем, что наряду с у1 решением уравнения (4.1) будет и у2=хеk1x. Действительно, подставим функцию у2 в уравнение (4.1). Имеем:

Но k12+pk1+q=0, т. к. k1 есть корень уравнения (4.2); р+2k1=0, т. к. по условию

Поэтому y''2+py'2+qy2=0, т. е. функция у2=хеk1x является решением уравнения (4.1).

Частные решения образуют фундаментальную систему решений: W(x)=e2k1x≠0. Следовательно, в этом случае общее решение ЛОДУ (4.1) имеет вид

Случай3. Корни k1 и k2 уравнения (4.2) комплексные:

В этом случае частными решениями уравнения (4.1) являются функции

По формулам Эйлера

имеем

Найдем два действительных частных решения уравнения (4.1). Для этого составим две линейные комбинации решений y1 и у2:

Функции являются решениями уравнения (4.1), что следует из свойств решений ЛОДУ второго порядка (см. теорему 3.2).

Эти решения образуют фундаментальную систему решений, так как W(x) ≠ 0 (убедитесь самостоятельно!). Поэтому общее решение уравнения (4.1) запишется в виде или

Пример 4.2. Решить уравнение

Решение: Имеем:

По формуле (4.5) получаем общее решение уравнения:

Таким образом, нахождение общего решения ЛОДУ второго порядка с постоянными коэффициентами (4.1) сводится к нахождению корней характеристического уравнения (4.2) и использованию формул (4.3)-(4.5) общего решения уравнения (не прибегая к вычислению интегралов).




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 597; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.