Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 12. Понимание формулы n-го члена арифметической прогрессии




Теория Практика
Прогрессии 1. Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом d, называется арифметической прогрессией. Число d – разность прогрессии. ; Формула n -го члена: Свойство прогрессии: Сумма n -членов: или 2. Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и тоже число q, называется геометрической прогрессией. Число q – знаменатель прогрессии. ; Формула n -го члена: Свойство прогрессии: Сумма n -членов: , Если , то прогрессия называется бесконечно убывающей геометрической прогрессией. 1. Последовательность () - арифметическая прогрессия, в которой и . Найдем пятидесятый член этой прогрессии. Имеем: . 2. Геометрическая прогрессия задана условиями: , . Какое из данных чисел является членом данной прогрессии? 1) 6 2) 12 3) 24 4) 27   Решение: Выпишем несколько первых членов прогрессии: 3, 9, 27; число 27 является ее членом. Ответ: 4. Другой способ. Если заметить, что члены прогрессии — это степени числа 3, то можно сразу указать ответ, так как среди приведенных чисел, 27 является единственным числом, отвечающим этому условию. 3. Формулой n -го члена задана последовательность, какое из следующих чисел не является ее членом: А) Б) В) Г) . Решение: можно непосредственно вычислять один за другим члены последовательности — Получим , , , , . первые три указанных числа являются членами последовательности, а это означает, что верный ответ дан под буквой Г. Можно «для убедительности» найти и , т.е. число действительно не является членом последовательности.

 




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 749; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.