КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Поздовжні коливання стержня. Виведення хвильового рівняння
Лекція 2 Поздовжні коливання стержня Контрольні запитання 1.1 Що є предметом математичної фізики? 1.2 За допомогою яких математичних засобів моделюються фізичні задачі та явища, пов’язані з температурними, хвильовими та іншими процесами? 1.3 Означення диференціального рівняння з частинними похідними, його порядок. 1.4 Що є розв’язком диференціального рівняння з частинними похідними і від чого він залежить? 1.5 Чим відрізняється загальний розв’язок диференціального рівняння з частинними похідними від загального розв’язку диференціального рівняння? 1.6 Які фізичні процеси та явища описуються канонічними диференціальними рівняннями гіперболічного (еліптичного, параболічного) типу? 1.7 Як звести диференціальне рівняння з частинними похідними, яке є лінійним відносно похідних другого порядку, до канонічного типу? 1.8 Мета зведення диференціального рівняння з частинними похідними до канонічного типу. 1.9 Класифікація диференціального рівняння з частинними похідними другого порядку. 1.10 Як канонічний вид диференціального рівняння другого порядку з частинними похідними залежить від знаку визначника
Розглянемо задачу про поздовжні коливання, які виникають у стержні під час його розтягу або стиску внаслідок прикладених зусиль. При виведенні рівняння, яке описує такі коливання, зробимо ряд припущень відносно геометричного та фізичного станів стержня. Нехай стержень, як тіло циліндричної або призматичної форми, буде задовольняти наступним умовам: 1) стержень прямолінійний завдовжки l; 2) поперечний переріз є сталим, тобто його площа S =const; 3) стержень однорідний, тобто густина 4) стержень пружний, тобто мова йде про пружні коливання, коли має місце закон Гука і немає залишкових деформацій ( 5) стержень ізотропний, тобто властивості матеріалу, з якого виготовлено стержень, у всіх напрямках однакові; 6) коливання малі; 7) зовнішні сили, якщо вони є, діють вздовж осі стержня; 8) в результаті коливань поперечні перерізи залишаються перпендикулярними до осі стержня. Розглянемо стержень, вздовж осі якого спрямуємо вісь
Рис. 2.1 – Стержень з виділеним довільним елементом
Прикладемо до стержня деяку осьову, наприклад, розтягуючу силу Припустимо, що в деякий момент часу, який приймаємо за початковий (
Це є абсолютним видовженням. Позначимо початкову довжину виділеного елемента через
Очевидно, що відносна деформація – величина безрозмірна. Для виведення рівняння, яке описує коливальний процес скористаємося другим законом Ньютона [1], згідно якого сума всіх діючих на рухомий об’єкт сил дорівнює добутку маси на прискорення. Розглянемо сили, які можуть діяти на виділений елемент 1) Внутрішні сили
Отже, у перерізі
2) Зовнішні сили, які за нашим припущенням діють вздовж осі стержня. Позначимо через f (x,t) величину цієї сили, віднесену до одиниці об’єму (інтенсивність зовнішніх сил). Тоді на елементарний об’єм
3) Сила інерції, яка діє на елементарний об’єм
А для виділеного елемента
Згідно із другим законом Ньютона маємо:
Вважаємо, що підінтегральна функція неперервна на довільно вибраному елементі
Введемо позначення
Тоді
Одержане рівняння називається хвильовим рівнянням, яке описує поздовжні коливання у стержні. Проаналізуємо це рівняння. Шукана функція U(x,t) – це зміщення перерізу
Якщо
описуватиме власні поздовжні коливання у стержні. Якщо Визначимо вільний член
Отже, Хвильове рівняння для важкого стержня:
Дата добавления: 2013-12-14; Просмотров: 2657; Нарушение авторских прав?; Мы поможем в написании вашей работы! |