Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Применение их соединений в медицине




Биологическая роль d-элементов IIБ-группы.

Цинк Zn, кадмий Сd, ртуть Нg — микроэлементы. В организме взрослого человека содержится 1,8г (0,0024%) Zn, 50 мг (7-10-5%) Cd, 13мг (2-10-5%)Нg.

Кадмий и ртуть — примесные элементы. Около 70% ртути сосредоточено в жировой и мышечной ткани. Кадмий локализуется на 30% в почках, остальное в печени, легких, поджелудочной железе.

Цинк — необходимый элемент всех растений и животных. В организме взрослого человека больше всего цинка в мышцах (65%), костях (20%). Остальное количество приходится на плазму крови, печень, эритроциты. Наибольшая концентрация цинка в предстательной железе.

Цинк не проявляет переменной валентности. Видимо поэтому его биокомплексы принимают участие во многих биохимических реакциях гидролиза, идущих без переноса электронов. Ион цинка входит в состав более 40 металлоферментов, катализирующих гидролиз эфиров и белков.

Одним из наиболее изученных является бионеорганический комплекс цинка — фермент карбоангидраза (Мг = 30 000), состоящий, примерно, из 260 аминокислотных остатков.

Ниже схематично представлено положение иона цинка в полости карбоангидразы (КА). Белковый лиганд, связанный с Zn2+, представляет активный центр фермента. Цинка в ферменте всего 0,22%. Тем не менее наличие цинка — необходимое условие каталитической активности карбоангидразы, которая обеспечивает гидратацию СО2:

СО2 + Н2О → НСО3- + Н+

Протекание этой реакции обусловливает нормальное дыхание. В отсутствие карбоангидразы нормальный газообмен был бы затруднен, так как гидратация СО2 замедлилась бы в 10000000 (107) раз.

Как видно из схемы, координационное число Zn2+ в карбоангидразе равно 4. Три связи заняты аминокислотными остатками (Нis — гистидил), а четвертая связывает гидроксил — ион ОН- или молекулу воды.

Единого мнения о действии карбоангидразы нет. Одни исследователи считают, что цинк координирует молекулу воды, гидратирующую СО2. Другие полагают (механизм «цинк — гидроксид»), что цинк координирует гидроксильную группу при гидратации СО2:

ОН- + СО2 ⇄ НСО3-

Прежде полагали, что карбоангидраза катализирует только обратимую гидратацию СО2. Однако имеются данные о каталическом действии карбоангидразы на превращение карбонильной группы (С=О) субстрата в карбоксильную (СООН). В этом случае механизм действия карбоангидразы подобен действию другого цинксодержащего фермента — карбоксипептидазы (КОП).

Одна из наиболее изученных форм КОП имеет 307 аминокислотных остатков (содержание цинка 0,19%). Схему реакции превращения карбонильной группы субстрата в карбоксильную, катализируемой КОП, можно представить следующим образом:

Механизм действия КОП окончательно не выяснен, и возможны два варианта.

Механизм «цинк — карбоксил» предполагает, что субстрат вытесняет молекулу воды, координированную цинком. Затем карбонильная группа образует связь с ионом цинка. Другой механизм не предполагает образование связи через карбоксил фермента.

Цинк не входит в состав дипептидаз — ферментов, катализирующих гидролиз дипептидов — веществ, состоящих из двух аминокислот.

Цинк образует бионеорганический комплекс с инсулином — гормоном, регулирующим содержание сахара в крови.

Потребность человека в цинке полностью удовлетворяется пищевыми продуктами: мясными, молочными, яйцами.

При недостатке цинка в растениях нарушаются белковый и углеводный обмен, тормозится синтез хлорофилла и витаминов. Дефицит цинка устраняется при использовании цинксодержащих удобрений.

Токсичность соединений IIБ-группы увеличивается от цинка к ртути.

Водорастворимые соединения оказывают раздражающее действие на кожу. При попадании внутрь организма вызывают отравление.

Токсичны и сами металлы. При вдыхании паров цинка (воздух цинковых производств) появляется «металлическая» лихорадка. Отравление парами ртути в средние века получило название «болезнь сумасшедшего шляпочника».

Содержание ртути в пищевых продуктах (в морских, как в Японии) приводит к «болезни миномата».

Токсичность ртути связана с агглютинацией (склеиванием, слипанием) эритроцитов, ингибированием ферментов.

Например, сулема НgСl2 вызывает изменение размеров, осмотическую хрупкость и снижение деформируемости эритроцитов, которая необходима для их продвижения по капиллярам.

Токсичность кадмия связана с его сродством к нуклеиновым кислотам. В результате его присоединения к ДНК нарушается ее функционирование.

Хроническая интоксикация кадмием и ртутью может нарушить минерализацию костей. Это связано с близостью ионных радиусов. Поэтому токсичные элементы могут замещать кальций. Это приводит к образованию апатита несовершенной структуры вследствие искажения параметров кристаллического компонента костной ткани. В результате снижается прочность костей.

Соединения Zn, Сu, Нg могут вызывать нарушение белкового обмена, что проявляется в выделении белков плазмы через почки (протеинурия).

Токсичное действие соединений группы IIБ на организм вызывается еще и тем, что ионы этих металлов вступают во взаимодействие с сульфгидрильными SН-группами белков, ферментов и аминокислот.

При взаимодействии ионов металлов с SН-группами образуются слабодиссоциирующие и, как правило, нерастворимые соединения. Поэтому блокирование сульфгидрильных групп приводит к подавлению активности ферментов и свертыванию белков. Ионы двухвалентных металлов блокируют одновременно две SН-группы.

В реакциях подобного типа ионы металлов выступают акцептором, а сера — донором электронов.

Наиболее выражено химическое сродство SН-группам у ртути. Очевидно, это связано с тем, что комплексообразующие свойства ртути выше и она образует более прочные связи с серой.

SН-группы входят в состав более 100 ферментов, активность которых может быть подавлена из-за блокирования этих групп. Поэтому очевидно, насколько важно знать механизм блокирования и методы лечения при отравлении организма металлами.

Известно, что токсические свойства элементов зависят от той химической формы, в какой они попадают в организм. Наиболее токсичны те формы, которые растворяются в липидах и легко проникают через мембрану в клетку.

В литературе описан случай массового отравления ртутью в Японии. Неорганические соединения ртути под действием ферментов микроорганизмов превращались в метилртуть:

Нg2+ + СН3- → СН3Нg+

Метилртуть накапливалась в рыбе, а затем с пищей попадала в организм человека. Из-за того, что СН3Нg+ растворяется в липидах, она накапливается в организме, в том числе и в мозге. Постепенно концентрируясь, метилртуть вызывает необратимые разрушения в организме и смерть.

Использование соединений цинка и ртути в медицине основано на их вяжущем, прижигающем и антисептическом действии. В качестве глазных капель применяют 0,25%-ный водный раствор цинк сульфата ZnSО4. В стоматологии цинк хлорид ZnСl2 используют для прижигания папилом, для лечения воспаленных слизистых. Применяется также цинк оксид ZnО.

Хлорид ртуть (II) Нg2Сl2 (сулема) очень ядовита и ее водные растворы при больших разбавлениях (1:1000) применяются для дезинфекции. Для лечения кожных и венерических заболеваний применяют мази, содержащие оксид ртути (II) НgО и сульфид ртути (II) НgS. Хлорид ртути (I) Нg2Сl2 (каломель) плохо растворяется в воде и поэтому мало ядовита. Эту соль применяют в ветеринарии как слабительное средство.

Ртуть при обычных условиях — жидкий металл, который способен растворять другие металлы. При этом образуются твердые сплавы — амальгамы. В стоматологии для пломбирования зубов издавна применяли амальгамы серебра и кадмия. Они химически инертны, легко размягчаются при нагревании и поэтому легко формуются.

Жидкая ртуть используется в ряде приборов, применяемых в медицине. Например, для измерения артериального давления, в медицинских термометрах.

Источники ультрафиолетового света — ртутно-кварцевые лампы медицинского назначения содержат газообразную ртуть (пары). При облучении светом этих ламп больничных помещений уничтожаются микроорганизмы, содержащиеся в воздухе. С помощью ультрафиолетовых лучей лечат различные кожные заболевания.

Таким образом, по характеру функционирования и воздействия на организм металлы IIБ-группы можно разделить на жизненнонеобходимый элемент Zn и токсичные примесные элементы Сd и Нg.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 2457; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.