КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
The block-spring system
We begin by considering the dynamics of a block that is oscillating at the end of a massless spring. We assume that the net force acting on the block is that exerted by the spring, which is given by Hooke's law: Fsp = -kx where x is the displacement from the equilibrium position. When x is positive, Fsp is negative, the force is directed to the left. When x is negative, Fsp is positive, the force is directed to the right. Thus, the force always tends to restore the block to its equilibrium position x = 0. Newton's second law (F = ma) applied to the block is –kx = ma, which means The acceleration is directly proportional to the displacement, but is in the opposite direction, as is required for SHM. Since a = d2x/dt2, we have (15.6) This differential equation is another way of writing Newton's second law. When Eq. 15.6 is compared with Eq. 15.5, we see that the block-spring system executes simple harmonic motion with an angular frequency (15.7) or a period (15.8) Period of a block-spring system
As is required for SHM, the period is independent of the amplitude. For a given spring constant, the period increases with the mass of the block: A more massive block oscillates more slowly. For a given block, the period decreases as к increases: A stiffer spring produces quicker oscillations. FIGURE 15.4
Дата добавления: 2014-01-05; Просмотров: 356; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |