Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эллипс. Окружность




Линии второго порядка на плоскости.

Лекция 4.

 

 

Эллипс, окружность. Гипербола. Парабола.

 

Линии, уравнения которых в прямоугольной систем координат являются уравнениями второй степени, называются линиями второго порядка. К важнейшим линиям второго порядка относятся эллипс, окружность, гипербола и парабола.

 

 

Определение 4.1. Эллипсом называется множество всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная, большая чем расстояние между фокусами.

Пусть F1(-c,0) и F2(c,0) ─ фокусы. Тогда F1F2 = 2c ─ фокусное расстояние (рис.4.1). Постоянную величину, о которой идёт речь в определении эллипса, обозначим 2a.

Пусть M(x,y) ─ произвольная точка эллипса. Тогда по определению F1M + F2M = 2a > 2c, откуда a > c.

Так как F1M = , F2M = , то имеем уравнение + = 2a.

Преобразуем это уравнение:

()2 = (2a − )2,

(x2 + 2cx + c2) + y2 = 4a2 – 4a+ (x2 –­ 2cx + c2) + y2,

a= a2 – cx.

Возводя в квадрат последнее уравнение, имеем

 

a2(x2 – 2cx + c2 + y2) = a4 – 2cxa2 + c2x2,

(a2 – c2)x2 + a2y2 = a2(a2 – c2).

 

Так как a > c, то a2 – c2 > 0 и можем обозначить b2 = a2 – c2. Тогда

 

b2x2 + a2y2 = a2b2,

 

= 1 (1)

Таким образом, координаты любой точки эллипса удовлетворяют уравнению (1).

 

Покажем обратное: если координаты точки M(x,y) удовлетворяют уравнению (1), то точка M лежит на эллипсе.

 

Из (1) найдём y2: y2 = b2(1 - ).

Тогда F1M = = = == = = │

Т.к. c < a и из (1) ≤ 1, т.е. x2 ≤ a2, │x│ ≤ a, то . Следовательно,

│= .

Аналогично можно вычислить

F2M = .

Теперь

F1M + F2M = .

Из уравнения (1): b2 > 0 Þ a2 – c2 > 0, т.е. a > c, откуда 2a > 2c. Значит, точка M лежит на эллипсе.

 

Уравнение (1) называется каноническим уравнением эллипса. Изображён эллипс с уравнением (1) на рис 4.2.

Точки пересечения эллипса с осями координат называются вершинами эллипса. Оси симметрии эллипса (оси Ox и Oy) называют осями эллипса. Точка пересечения осей ─ центр эллипса. Осями называют также отрезки A1A, B1B. Отрезки OA, OB и их длины называют полуосями. В нашем случае a > b, поэтому а называют большой полуосью, b ─ малой полуосью. Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большой оси, т.е.

ε = .

Так как 0 c < a, то 0 ε < 1. Фокальными радиусами точки M называют отрезки F1M и F2M. Их длины r1 и r2 вычисляют по формулам

r1 = a + εx,

r2 = a – εx.

Уравнение (1) можно рассматривать и в случае, когда b > a, оно определяет эллипс с большой полуосью OB = b, фокусы такого эллипса лежат на оси Oy, причём a2 = b2 – c2.

В случае, когда a = b, уравнение (1) принимает вид

= 1 или x2 + y2 = a2

и определяет окружность радиуса а с центром в начале координат (рис.4.3). В этом случае c = 0, поэтому ε = 0.

Из школьного курса известно уравнение окружности радиуса R с центром в точке A0(x0,y0):

(x – x)+(y – y)=R.

Такое уравнение называют каноническим уравнением окружности.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1001; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.