КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Парабола
Определение 4.3. Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и данной прямой, называемой директрисой, и не проходящей через фокус. Возьмём в прямоугольной системе координат точку F(,0), где p > 0 и пусть она будет фокусом. Директрисой будет прямая x = - (рис.4.7). Пусть M(x,y) ─ произвольная точка параболы. Если K ─ основание перпендикуляра из точки M к директрисе, то она имеет координаты (- ,y). По определению 4.3 MK = MF.
Тогда = , = , т.к. x ≥ 0. Возводим уравнение а квадрат и приводим подобные члены: ,
y2 = 2px (4)
Уравнение (4) называется каноническим уравнением параболы. Величину p называют параметром параболы. Парабола с уравнением (4) изображена на рис.4.8. Точка O называется вершиной параболы, ось симметрии ─ осью параболы. Если парабола имеет уравнение y2 = - 2px, то её график расположен слева от оси Oy (рис.4.9). Уравнения x2 = 2pyи x2 = -2py, p > 0 определяют параболы, изображённые на рис.4.10 и рис.4.11, соответственно.
Дата добавления: 2014-01-07; Просмотров: 503; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |