КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Систем линейных уравнений
Системы линейных уравнений Лекция 7. Системы линейных уравнений. Критерий совместности системы линейных уравнений. Метод Гаусса решения систем линейных уравнений. Правило Крамера и матричный метод решения систем линейных уравнений.
Совокупность уравнений вида (1) называется системой m линейных уравнений с n неизвестными х1, х2,…, хn. Числа aij называются коэффициентами системы, а числа bi ─ свободными членами. Решением системы (1) называется совокупность чисел с1, с2,…, сn, при подстановке которых в систему (1) вместо х1, х2,…,хn, получаем верные числовые равенства. Решить систему ─ значит найти все её решения или доказать, что их нет. Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если решений нет. Матрица, составленная из коэффициентов системы А = Называется матрицей системы (1). Если к матрице системы добавить столбец свободных членов, то получим матрицу В = , которую называют расширенной матрицей системы (1). Если обозначим Х = , С = , то систему (1) можно записать в виде матричного уравнения АХ=С.
Дата добавления: 2014-01-07; Просмотров: 294; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |