Если функции f(x) и g(x) непрерывны на полупрямой [a,+¥) и удовлетворяют на нем условию 0£f(x)£g(x), то из сходимости интеграла
(1)
следует сходимость интеграла
(2),
и обратно: из расходимости интеграла (2) следует расходимость интеграла (1).
Следствие:
Если f(x) и g(x) – непрерывные функции на полупрямой [a,+¥) и (где R – действительное число: 0<R<¥), то интегралы и сходятся или расходятся одновременно.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление