КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Изоферменты
Большинство ферментов представлены в клетках организма в виде множественных молекулярных форм, называемых изоферментами или изоэнзимами. Изоферменты – это сходные по структуре белковые молекулы, способные катализировать одну и ту же биохимическую реакцию, но различающиеся по первичной структуре входящих в их состав полипептидов. Они имеют одинаковую структуру каталитического центра, вследствие чего обладают одним типом субстратной специфичности. Изоферменты одного и того же фермента отличаются оптимумами рН, температуры, других условий внешней среды, по их молярной активности, но все они катализируют одну и ту же реакцию. Когда из клеток организма выделяют какой-либо фермент и определяют его активность, то всегда имеют дело с конкретными изоферментами данного фермента. Молекулы ферментов чаще всего представляют собой олигомеры, построенные из двух или нескольких полипептидов, которые в той или иной степени различаются первичными структурами, но имеют однотипную третичную структуру и поэтому при взаимодействии образуют функционально родственные белки. Как было показано ранее, различающиеся первичными структурами полипептиды в составе олигомерных молекул кодируются разными генами, в связи с чем природа и набор изоферментов определяются генотипом организма. Впервые механизм образования изоферментов был выяснен при изучении множественных молекулярных форм фермента лактатдегидрогеназы, катализирующего превращение молочной кислоты в пировиноградную в клетках человека и животных:
-2Н СН3 – СН(ОН) – СООН ¾® СН3 – С – СООН || О В ходе исследований были выделены кристаллические препараты лактатдегидрогеназы из клеток печени, сердечной мышцы и скелетных мышц и подвергнуты разделению методом электрофореза в щелочной буферной системе (рН 8,8). В таких условиях молекулы фермента имеют отрицательный заряд и в зависимости от величины заряда проявляют разную подвижность в направлении к аноду. В процессе электрофоретического разделения было выделено пять белковых фракций, каждая из которых представляла собой тетрамерные молекулы с молекулярной массой около 140 тыс., образованные из различных комбинаций двух типов полипептидов, обозначаемых Н и М. Полипептиды Н наиболее активно синтезируются в сердечной мышце и печени и больше содержат в своем составе остатков моноаминодикарбоновых кислот. Второй тип полипептидов М преимущественно синтезируется в скелетных мышцах и они характеризуются меньшим содержанием дикарбоновых аминокислот. С участием указанных типов полипептидов образуется пять разновидностей ферментных молекул, являющихся изоферментами лактатдегидрогеназы: Н4, Н3М, Н2М2, НМ3, М4. Каждая молекула изофермента как тетрамер состоит из 4 полипептидов, которые могут быть идентичными (Н4 и М4) или разными (Н3М, Н2М2, НМ3). Количественное содержание каждого изофермента в данной ткани зависит от концентрации в ней полипептидов Н и М. Вследствие того, что полипептиды Н содержат больше в своем составе остатков дикарбоновых аминокислот, тетрамер Н4 при рН среды 8,8 имеет наибольший отрицательный заряд, вследствие чего быстрее движется к аноду в процессе электрофореза (рис. 19) Тетрамер М4 характеризуется наименьшей подвижностью к аноду, так как его молекулы построены из полипептидов с меньшим содержанием дикарбоновых аминокислот. Другие изоферменты распределяются при электрофорезе между фракциями Н4 и М4 в зависимости от числа полипептидов Н и М в их молекулах. На примере лактатдегидрогиназы мы видим, если молекула фермента - тетрамер, образованный из двух типов полипептидов, то возникают пять изоферментов. Но если молекулы тетрамерного фермента формируются из трех типов полипептидов, например А, Б и В, тогда возникают следующие комбинации полипептидов в молекуле: А4, Б4, В4, А3Б, А3В, А2Б2, А2В2, А2БВ, АБ3, АВ3, АБ2В, АБВ2, Б3В, В3Б, Б2В2. На этом примере видно, что набор изоферментов заметно возрастает при увеличении числа разных полипептидов, из которых строятся молекулы белка–фермента. Набор изоферментов также увеличивается при возрастании степени олигомерности молекулы фермента. Так, у лактатдегидрогиназы из двух разных полипептидов строятся тетрамерные молекулы и возникают 5 изоферментов, а у гексамерного белка из двух типов полипептидов образуются уже семь изоферментов, у октамерного белка – 9 и т.д. Таким образом, общий набор изоферментов данного ферментного белка определяется степенью олигомерности его молекулы и числом разных полипептидов, из которых образуются молекулы белка. Следует отметить, что к изоферментам не относятся молекулы фермента, измененные в результате повреждения структуры белка или модификации его молекул путем присоединения активных группировок (так называемая посттрансляционная модификация белков). Поскольку изоферменты – это определенный набор белковых молекул, способных катализировать превращение одного и того же субстрата, то для их выявления используют методы разделения, принятые для белков, с последующим определением каталитической активности. Наиболее часто для разделения изоферментов используют метод электрофореза в полиакриламидном геле, который по сравнению с другими методами имеет наиболее высокую разрешающую способность. При разделении этим методом можно выявить изоферменты, различающиеся по суммарному заряду молекулы, который определяется содержанием в белке остатков моноаминодикарбоновых кислот. Если же в составе организма имеются генетические варианты молекул фермента, у которых различия в аминокислотном составе не приводят к изменению заряда молекулы, то для их разделения используют модификации электрофореза, основанные на других принципах, например, изоэлектрофокусирование белков. Особенно большое разнообразие множественных молекулярных форм наблюдается у растительных ферментов. Практически каждый фермент представлен в растении в виде набора изоферментов, каждый из которых проявляет каталитическую активность в строго определенных условиях, зависящих от внутренней физиологической среды, что позволяет организму обеспечивать специфичность обмена веществ в данном органе, ткани или внутриклеточном компартменте (межклеточном отсеке). Так, например, в листьях и корнях растений разная физиологическая среда, но в них может проходить одна и та же реакция за счет того, что ее катализируют разные изоферменты данного фермента. В процессе роста и развития растений постоянно изменяется внутренняя физиологическая среда и внешние условия, в соответствии с этим изменяется и набор изоферментов каждого фермента. Особенно заметно наблюдаются качественные и количественные изменения состава изоферментов при созревании и прорастании семян. На рис. 21 показаны электрофореграммы изоферментов a-амилазы созревающего, зрелого и прорастающего зерна пшеницы, различающихся по их подвижности к аноду. При сравнении электорофореграмм видно, что в созревающем зерне пшеницы амилолитическую активность имеют четыре, изофермента с низкой подвижностью к аноду, а в прорастающем зерне также четыре, но уже других по электрофоретической подвижности изофермента. Вследствие того, что при созревании зерна происходит связывание амилаз белковыми ингибиторами в неактивный комплекс, в полностью созревшем зерне при благоприятных погодных условиях выявляется слабая амилолитическая активность только одного изофермента a-амилазы. Однако в зерновках, сформировавшихся при влажной погоде, активность большинства изоферментов a - амилаз, выявленных в созревающем зерне, сохраняется. Наличие в клетках организма множественных молекулярных форм одного и того же фермента, проявляющих каталитическую активность при разных физиологических условиях позволяет организму осуществлять с необходимой интенсивностью биохимические процессы при изменении условий внешней среды. Когда изменяются внешние условия, то они становятся неблагоприятными для проявления каталитической активности определенных изоферментов, но биохимическая реакция не прекращается, так как вступают в действие другие изоферменты, которые способны катализировать данное превращение в изменившихся условиях. Если появляется новый изофермент, то он расширяет диапазон выживаемости организма. Чем больше набор изоферментов, тем шире диапазон их действия и лабильнее происходит адаптация организма к неблагоприятным факторам внешней среды. Изучение ферментных систем растений показывает, что специфичность обмена веществ у разных генотипов обеспечивается характерным для каждого генотипа набором изоферментов. Чем ближе генотипы растений в систематическом отношении, тем меньше различается у них изоферментный состав ферментов. В связи с этим изоферментный анализ довольно успешно применяется для уточнения систематики живых организмов, выявления филогенетического родства между видами и сортами растений, а также проверки генетической чистоты или, наоборот, генетического разнообразия растительной популяции.
Дата добавления: 2014-01-11; Просмотров: 1071; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |