Электрохимическими процессаминазывают процессы взаимного превращения химической и электрической форм энергии. Электрохимические процессы можно разделить на две основные группы: процессы превращения химической энергии в электрическую (в гальванических элементах); процессы превращения электрической энергии в химическую (электролиз).
Электрохимические реакции, протекающие в гальванических элементах и при электролизе, проходят на границе раздела веществ, имеющих ионную (например, растворы электролитов) и электронную проводимость (например, металлы).
Рассмотрим процессы, протекающие на границе раздела металл – раствор соли металла. При погружении металла в раствор начинается взаимодействие металла с компонентами раствора:
M ⇄ M n+ + nе–.
Прямая реакция – окисление металла и диффузия его гидратированных ионов в раствор, обратная реакция – восстановление ионов металла из раствора на поверхности металлического кристалла.
Рассмотрим случай, когда скорость прямой реакции больше скорости обратной. Металл, окисляясь, оставляет в кристалле электроны. Поверхность металла из-за избытка электронов заряжается отрицательно. Положительно заряженные ионы из раствора (катионы металла, диполи воды) притягиваются к отрицательной поверхности металла, на границе возникает двойной электрический слой (рис. 9.3.1, а).
В случае, если скорость обратной реакции больше скорости прямой, катионы соли, восстанавливаясь на поверхности металлической поверхности, «обедняют» ее электронами и металл заряжается положительно. Отрицательно заряженные ионы из раствора (анионы соли металла, диполи воды) притягиваются к положительно заряженной поверхности металла, на границе возникает двойной электрический слой (рис. 9.3.1, б).
Таким образом, между металлом и раствором в условиях равновесия возникает разность потенциалов, которая называется равновесным электродным потенциалом. Абсолютные значения электродных потенциалов экспериментально определить невозможно, их можно только сравнить.
В качестве электрода сравнения используют водородный электрод. Потенциал стандартного водородного электрода при температуре 298 K условно принимают равным нулю.
Водородный электрод состоит из платинированной платины, полученной нанесением на поверхность платины слоя высокодисперсной платины, контактирующей с газообразным водородом, находящимся под давлением 100 кПа, и раствором, в котором концентрация ионов Н+ равна единице. При контакте платины с молекулярным водородом происходит адсорбция водорода на платине. Адсорбированный (поглощенный поверхностью) водород, взаимодействуя с молекулами воды, переходит в раствор в виде ионов, оставляя в платине электроны. Наряду с переходом ионов в раствор идет обратный процесс восстановления ионов Н+ с образованием молекул водорода. Равновесие на водородном электроде можно записать в виде
2Н+ + 2 е– ⇄ Н2.
Для определения потенциалов электродов по водородной шкале собирают гальванический элемент, состоящий из водородного электрода и исследуемого металла (рис. 9.3.2).
Электродный потенциал металла, измеренный по отношению к водородному электроду при стандартных условиях (т. е. при концентрации ионов металлов в растворе 1 моль/л и температуре 298 К), называют стандартным электродным потенциалом металла (, В). Значения стандартных электродных потенциалов металлов – справочная величина.
Если условия отличаются от стандартных, то для расчета электродных потенциалов используют уравнение Нернста:
,
(9.3.1)
где – электродный потенциал металла, В; – его стандартный электродный потенциал, В; R – универсальная газовая постоянная (8,314 Дж/(моль·К)); T – температура, К; n – число электронов, принимающих участие в процессе; F – число Фарадея (96485 Кл/моль); [M n+] – концентрация ионов в растворе, моль/л.
Переходя от натурального логарифма к десятичному и подставляя в уравнение (9.3.1) соответствующие значения R, F и Т = 298 К, получаем
.
(9.3.2)
Согласно уравнению Нернста потенциал металлического электрода зависит от концентрации ионов металлов в растворе, от температуры и от природы металла.
Потенциалы газовых электродов. Газовые электроды состоят из металлического проводника, контактирующего одновременно с газом и раствором, содержащим ионы этого газа. Металл является только электронным проводником и не принимает участия в окислительно-восстановительных реакциях (электрохимически инертен), например, платина и платиновые металлы, графит, стеклоуглерод. Так как в равновесных электродных реакциях участвуют газообразные компоненты, то электродные потенциалы этих электродов зависят от парциальных давлений газов.
Потенциалы окислительно-восстановительных (редокси-) электродов. К окислительно-восстановительным (редокси-) электродам относят только те электроды, в реакциях которых не принимают непосредственного участия металлы и газы. Такие электроды состоят из металлического проводника, контактирующего с раствором, содержащим окислители и восстановители. К металлу в редокси-электродах предъявляются те же требования, что и к металлическому проводнику в газовых электродах.
В общем виде равновесие на электроде для простых систем записывается уравнением
Ox + n е– ® Red,
Red – n е– ® Ox,
где Ox – окисленная форма вещества; Red – восстановленная форма вещества.
Уравнение Нернста для расчета потенциала редокси-электрода имеет вид
(9.3.3)
Значения стандартных потенциалов редокси-электродов можно найти в справочниках. Потенциал окислительно-восстановительных электродов служит мерой окислительной и восстановительной способности систем. Окислительная способность систем возрастает со сдвигом редокси-потенциала в сторону положительных значений. Восстановительная способность систем растет со сдвигом потенциала в сторону отрицательных значений.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление