КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Химические свойства и биологическая роль элементов
Элементы р-блока. Элементы, у которых происходит достройка р-подуровня внешнего валентного уровня называют р-элементами. Электронное строение валентного уровня ns2p1-6. Валентными являются электроны s- и р-подуровней. В периодах слева направо возрастает заряд ядер, влияние которого превалирует над увеличением сил взаимного отталкивания между электронами. Поэтому потенциал ионизации, сродство к электрону, а, следовательно, и акцепторная способность и неметаллические свойства в периодах увеличиваются. Все элементы, лежащие на диагонали В – At и выше являются неметаллами и образуют только ковалентные соединения и анионы. Все остальные р-элементы являются амфотерными элементами и образуют как катионы, так и анионы, причем и те, и другие сильно гидролизуется. Большинство р-элементов-неметаллов – биогенные (исключение – благородные газы, теллур и астат). Из р-элементов - металлов – к биогенным относят только алюминий. Различия в свойствах соседних элементов, как внутри; так и по периоду, выражены значительно сильнее, чем у s-элементов. р-элементы второго периода – азот, кислород, фтор обладают ярко выраженной способностью участвовать в образовании водородных связей. Элементы третьего и последующего периодов эту способность теряют. Их сходство заключается только в строении внешних электронных оболочек и тех валентных состояний, которые возникают за счет неспаренных электронов в невозбужденных атомах. Бор, углерод и особенно азот, сильно отличаются от остальных элементов своих групп. Все р-элементы и в особенности р-элементы второго и третьего периодов (С, N, Р, О, S, Si, Cl) образуют многочисленные соединения между собой и с s-, d- и f-элементами. Большинство известных соединений – это соединения р-элементов. Пять главных (макробиогенных) р-элементов жизни – О, Р, С, N и S – это основной строительный материал, из которого сложены молекулы белков, жиров, углеводов и нуклеиновых кислот. Из низкомолекулярных соединений р-элементов наибольшее значение имеют оксоанионы: СО32-, НСО3-, С2O42-, СНзСОО-, РО43-, НРO42-, H2PO4-, SO42- и галогенид-ионы. В процессе реакции р-элемент может отдавать и принимать электроны, выступая соответственно восстановителем или окислителем в зависимости от свойств элемента с которым вступает во взаимодействие. Это порождает широкий ассортимент образуемых ими соединений. Соединение углерода проявляет окислительные свойства, если в результате реакции атомы углерода увеличивают число его связей с атомами менее электроотрицательных элементов (металл, водород) потому, что притягивая к себе общие электроны связей атом углерода понижает свою степень окисления.
>С=О ® СНОН ® —СН2— Соединения углерода проявляют восстановительные свойства, если в результате реакции атомы углерода увеличивают число его связей с атомами более электроотрицательных элементов (О, N, S) потому что, отталкивая от себя общие электроны этих связей атом углерода повышает свою степень окисления
Перераспределение электронов между окислителем и восстановителем в органических соединениях может сопровождаться лишь смещением общей электронной плотности химической связи к атому, выполняющему роль окислителя. В случае сильной поляризации эта связь может и разорваться. Фосфаты в живых организмах служат структурными компонентами скелета, клеточных мембран и нуклеиновых кислот. Костная ткань построена главным образом из гидроксиапатита Ca5(PО4)3OH. Основу клеточных мембран составляют фосфолипиды. Нуклеиновые кислоты состоят из рибозо- или дезоксирибозофосфатных цепей. Кроме того, полифосфаты являются основным источником энергии. В организме человека обязательно синтезируется NO с помощью фермента NO -синтазы из аминокислоты аргинина. Время жизни NO в клетках организма порядка секунды, но их нормальное функционирование не возможно без NO. Это соединение обеспечивает: расслабление гладкой мускулатуры мышц сосудов, регуляцию работы сердца, эффективную работу иммунной системы, передачу нервных импульсов. Предпологают, что NO обеспечивает важную роль в обучении и запоминании. Окислительно-восстановительные реакции, в которых участвуют р-элементы, лежат в основе их токсического действия на организм. Токсическое действие оксидов азота связано с их высокой окислительно-восстановительной способностью. Нитраты, попадающие в продукты питания, в организме восстанавливаются до нитритов. NO3 - + 2H+ + 2е ® NO2- + Н2О Нитриты обладают высоко токсичными свойствами. Они превращают гемоглобин в метгемоглобин, который является продуктом гидролиза и окисления гемоглобина. FeННв + NО2- + 2Н+ ® FeННвОН + NО + Н2О В результате гемоглобин теряет способность транспорта кислорода к клеткам организма. В организме развивается гипоксия. Кроме того, нитриты, как соли слабой кислоты, реагируют с соляной кислотой в желудочном содержимом, образуя при этом азотистую кислоту, которая с вторичными аминами образует канцерогенные нитрозамины. Биологическое действие высокомолекулярных органических соединений (аминокислот, полипептидов, белков, жиров, углеводов и нуклеиновых кислот) определяется атомами (N, Р, S, О) или образуемыми группами атомов (функциональными группами), в которых они выступают в качестве химически активных центров, доноров электронных пар способных к образованию координационных связей с ионами металлов и органическими молекулами. Для них характерны реакции комплексообразования, амфотерные свойства, реакции гидролиза анионного типа. Данные свойства определяют их участие в основных биохимических процессах. Они образуют белковые, фосфатные, водородкарбонатные буферные системы. Участвуют в транспорте питательных веществ, продуктов метаболизма, и других процессах. Элементы s-блока. Химические элементы, в атомах которых заполняются электронами s-подуровень внешнего уровня, называют s-элементами. Строение их валентного уровня ns1-2. Небольшой заряд ядра, большой размер атома способствуют тому, что атомы s-элементов – типичные активные металлы; показателем этого является невысокий потенциал их ионизации. Катионы IIА группы имеют меньший радиус и больший заряд и обладают, следовательно, более высоким поляризующим действием. Химия таких элементов является в основном ионной, за исключением лития и бериллия, которые обладают более сильным поляризующим действием. В водном растворе ионы способны в небольшой степени к реакциям комплексообразования, образованию донорно-акцепторных связей с монодентатными лигандами (с водой - аквакомплексы) и даже с полидентатными лигандами. Большинство образующихся комплексов обладают невысокой устойчивостью. Ионы s-элементов имеют связи сразу с несколькими атомами кислорода соединения типа циклической молекулы - мембраноактивные комплексоны (ионофоры) - соединения, переносящие ионы s-элементов через липидные барьеры мембран. Молекулы ионофоров имеют внутримолекулярную полость, в которую может войти ион определенного размера. Полость окаймлена активными центрами (эндорецепторами). В зависимости от природы металла может происходить нековалентное взаимодействие (электростатическое, образование водородных связей, проявление Ван-дер-Ваальсовых сил) со щелочными металлами (валиномицин с К+) и ковалентное - со щелочноземельными металлами. Образуются при этом супрамолекулы – сложные ассоциаты, состоящие из двух или более химических частиц, удерживаемых вместе межмолекулярными силами. Двухзарядные ионы элементов IIA группы являются более сильными комплексообразователями. Для них наиболее характерно образование координационных связей с донорными атомами кислорода, а для магния – также азота (порфириновая система). Механизм действия антибиотика тетрациклина заключается в разрушении рибосом микроорганизмов за счет связывания ионов магния тетрациклином. Это определяет лечебный эффект данного антибиотика. Биологические функции s–элементов очень разнообразны: активация ферментов, участие в процессах свертывания крови, в различных реакциях организма, связанных с изменением проницаемости мембран по отношению к ионам калия, натрия и кальция, участие в образовании мембранного потенциала, в запуске внутриклеточных процессов, таких как обмен веществ, рост, развитие, сокращение, деление и секреция, обеспечивают перенос в клетке информации. Чувствительность клеток к данным ионам обеспечивается разностью их содержания вне и внутри клетки, градиентом концентрации (ионной асимметрией). Старение – понижение градиента концентрации, смерть – выравнивание концентрации вне и внутри клетки. Градиент концентрации обеспечивается связыванием свободных ионов клетки специфическими белками. Одним из немногих универсальных регуляторов жизнедеятельности клеток являются ионы кальция. Градиент концентраций Са2+ между цитоплазмой и средой на уровне 4 порядков и обеспечивается связыванием Са2+ в хелатное соединение специфическими белками. Кальмодулин – один из наиболее изученных кальцийсвязывающих белков, широко распространенных и встречающийся в клетках животных, растений и грибов. Этот белок способен регулировать большое число (более 30 описанных в настоящее время) различных процессов, происходящих в клетке. Вещества, регулирующие поток ионов, называются эффекторами, которые делятся на блокаторы и активаторы. В клинической практике применяются блокаторы в сердечно-сосудистой терапии (стенокардия, аритмия, инфаркт, миокарда), иммунологии, химиотерапии онкологических заболеваний. Верапамил, дигидропиридил ингибируют на 80-90% образование метастазов меланомы, значительно снижают адгезию (прилипание) опухолевых клеток к эндотелию и образованию колоний. Система регуляции градиента концентрации вне и внутри клеток, является перспективным направлением в биотехнологии (химической ионике) для получения важных веществ из клеток-продуцентов (b-клетки – источник инсулина, гипофизарные клетки – продуценты гормонов, фибробласты – источники факторов роста). Кроме активации ферментов, ионы щелочных металлов играют важную роль в осмотическом давлении, действуют как переносчики зарядов при передаче нервного импульса, стабилизируют структуру нуклеиновых кислот. Ионы кальция инициируют некоторые физиологические процессы, такие, как сокращение мышц, секрецию гормонов, свертывание крови и другие. Содержание ионов натрия, кальция и хлора во внеклеточной среде выше, а ионов калия и магния наоборот. Стационарное состояние достигается при равенстве потоков ионов калия внутрь клетки (активный транспорт) и из клетки за счет диффузии. Обратное явление наблюдается при транспорте ионов натрия. Существование калиево-натриевого градиента концентраций приводит к возникновению мембранного потенциала, величина которого около 80 мb. Благодаря ему нервные волокна способны передавать импульсы, а мышцы – сокращаться. Увеличение концентрации калия вне клетки в два раза, несмотря на наличие градиента концентрации ионов, калия приводит к нарушению сердечного ритма и смерти. Биологическая роль других ионов s-элементов пока неясна. Известно, что введением в организм ионов лития, удается лечить одну из форм маниакально-депрессивного психоза. Элементы d–блока – это элементы, у которых происходит достройка d–подуровня предвнешнего уровня. Они образуют побочные группы. Электронное строение валентного уровня d–элементов: (n-1)d1-10, ns1-2. Они расположены между s– и р–элементами, поэтому получили название «переходные элементы», d-элементы образуют 3 семейства в больших периодах и включают по 10 элементов (4-й период семейство Sc21 – Zn30, 5-й период – Y39 - Cd48, 6-й период - La57 – Hg80, 7-й период Ас89 – Mt109). Вслед за лантаном 5d1 6s2 следовало ожидать появление ещё 8 элементов с всё возрастающим количеством 5d электронов. Но оказывается, что теперь 4f оболочка несколько более устойчива, чем 5d, так что у последующих 14 элементов электроны заполняют 4f оболочку, пока она целиком не застроится. Эти элементы называются f-элементами, они занимают в периодической системе одну клетку с лантаном, так как имеют общие с ними свойства и называются лантаноиды. Особенности d-элементов определяются электронным строением их атомов: во внешнем электронном слое содержится, как правило, не более 2 s-электронов, р-подуровень свободный, происходит заполнение d-подуровня предвнешнего уровня. Свойства простых веществ d-элементов определяется в первую очередь структурой внешнего слоя, и лишь в меньшей степени зависят от строения предшествующих электронных слоев. Невысокие значения энергии ионизации этих атомов указывают на сравнительно слабую связь внешних электронов с ядром. Это определяет их общие физические и химические свойства, исходя из которых следует отнести простые вещества d-элементов к типичным металлам. Для V, Cr, Mn, Fe, Co энергия ионизации составляет соответственно от 6,74 до 7,87 эВ. Именно поэтому переходные элементы в образуемых ими соединениях проявляют только положительную степень окисления и проявляют свойства металлов. Большая часть d-элементов – это тугоплавкие металлы. По химической активности d-элементы весьма разнообразны. Такие как Sc, Mn, Zn наиболее химически активны (как щелочноземельные). Наиболее химически устойчивы Au, Pt, Ag, Сu. В первом ряду инертны Ti, Сr. В семействе Sc, Zn наблюдается плавный переход в изменении химических свойств слева направо, так как возрастание порядкового номера не сопровождается существенным изменением структуры внешнего электронного слоя, происходит только достройка d-подуровня предпоследнего уровня. Поэтому химические свойства в периоде хотя и закономерно, но гораздо менее резко изменяются, чем у элементов А групп, в которых ряд начинается активным металлом и заканчивается неметаллом. По мере увеличения заряда ядра d-элементов слева направо возрастает энергия ионизации, необходимая для отрыва электрона. В пределах одного семейства (декады) устойчивая максимальная степень окисления элементов сначала возрастает, благодаря увеличению числа d-электронов, способных участвовать в образовании химических связей, а затем убывает (вследствие усиления взаимодействия d-электронов с ядром по мере увеличения его заряда). Так максимальная степень окисления Sc, Ti, V, Сr, Mn совпадает с номером группы, в которой они находятся, у последнего не совпадает, для Fe равна 6, для Со, Ni, Сu - 3, а для Zn - 2 и соответственно меняется устойчивость соединений, отвечающих определенной степени окисления. В степени окисления +2 оксиды TiO и VО – сильные восстановители, неустойчивы, а СuО и ZnO не проявляют восстановительных свойств и устойчивы. Водородных соединений не образуют. Как изменяются свойства элементов в различных семействах сверху вниз? Размеры атомов сверху вниз от d-элементов 4 периода к d-элементам 5 периода возрастают, энергия ионизации уменьшается и металлические свойства увеличиваются. Когда переходим от 5 к 6 периоду, то размер атомов остается практически без изменений, свойства атомов также близки, например, Zr и Hf по свойствам очень близки и их трудно разделить. То же можно сказать о Мо и W, Те и Re. Элементы 6 периода идут после семейства лантаноидов, за счет этого дополнительное возрастание заряда ядра атома, а это приводит к оттягиванию электронов, более плотной их упаковке – происходит лантаноидное сжатие. В физических и химических свойствах простых веществ d-элементов много общего для типичных металлов. Общность и различие их проявляется особенно в химических свойствах соединений d-элементов. d-элементы имеют довольно много валентных электронов (Mn от 2 до 7 е), энергия которых различна, и они не всегда и не все принимают участие в образовании связей. Поэтому d-элементы проявляют переменную степень окисления, а следовательно для них характерны реакции окисления-восстановления. d-элементы способны проявлять степень окисления +2 за счет потери 2s-электронов, характерна также степень окисления +3 (исключение Zn). Высшая степень окисления большинства d-элементов соответствует номеру группы, в которой они находятся. С увеличением порядкового номера d-элемента значение устойчивой степени окисления возрастает. Отрицательную степень окисления не проявляют, следовательно, водородных соединений не образуют. В связи с тем, что d-элементы способны проявлять различные степени окисления, они способны образовывать соединения, резко отличающихся по кислотно-основным свойствам. Свойства оксидов и гидрооксидов зависят от степени окисления образующего их d-элемента. По мере повышения степени окисления d-элемента ослабевает основной характер их и усиливается кислотный характер. В степени окисления +2 проявляют только основной характер, промежуточной степени окисления – амфотерный характер и в высшей степени – кислотный характер. В организме d-элементы представлены как микроэлементы, существующие или в виде гидратированных, гидролизованных ионов; но чаще в виде бионеорганических комплексов. Способность образовывать комплексные соединения обусловлена наличием в их атомах свободных орбиталей (одной s-, трех р- и пяти d-орбиталей), проявляя координационное число равное 6, реже 2, 3, 5 и 8 для образования координационной связи с полидентными лигандами с образованием комплексных соединений хелатного типа. В кислых средах ионы d-элементов находятся в виде гидратированных ионов [М(Н2О)m]n+. При повышении рН гидратированные ионы многих d-элементов вследствие большого заряда и небольшого размера иона обладают высоким поляризующим влиянием на молекулы воды, акцепторной способностью к гидроксид-ионам, подвергаются гидролизу катионного типа, образуют прочные ковалентные связи с ОН-. Процесс заканчивается либо образованием основных солей [М(ОН)m](m-n)+, либо нерастворимых гидроксидов М(ОН)n, либо гидроксокомплексов [М(ОН)m](n-m)-. Процесс гидролитического взаимодействия может протекать с образованием многоядерных комплексов. Элементы, содержание которых не превышает 10-3%, входят в состав ферментов, гормонов, витаминов и других жизненно важных соединений. Для белкового, углеводного и жирового обмена веществ необходимы: Fe, Co, Mn, Zn, Мо, V, В, W; в синтезе белков участвуют: Mg, Мn, Fe, Со, Си, Ni, Сr, в кроветворении – Со, Ti, Си, Mn, Ni, Zn; в дыхании - Mg, Fe, Сu, Zn, Mn и Co. Поэтому микроэлементы нашли широкое применение в медицине, в качестве микроудобрений для полевых культур, подкормки в животноводстве, птицеводстве и рыбоводстве. Микроэлементы входят в состав большого числа биорегуляторов живых систем, в основе которых лежат биокомплексы. Ферменты – это особые белки, которые действуют как катализаторы в биологических системах. Ферменты – уникальные катализаторы, обладающие непревзойденной эффективностью действия и высокой селективностью. В настоящее время известно более 2000 ферментов, многие из которых катализируют одну реакцию. Активность большой группы ферментов проявляется только в присутствии определенных соединений небелковой природы, называемых кофакторами. В качестве кофакторов выступают ионы металлов или органические соединения. Примерно третья часть ферментов активируется переходными металлами. Ионы металлов в ферментах выполняют ряд функций: являются электрофильной группой активного центра фермента и облегчают взаимодействие с отрицательно заряженными участками молекул субстрата, формируют каталитически активную конформацию структуры фермента (в формировании спиральной структуры РНК, участвуют ионы цинка и марганца); участвуют в транспорте электронов (комплексы переноса электрона). Способность иона металла выполнять свою роль в активном центре соответствующего фермента зависит от способности иона металла к комплексообразованию, геометрии и устойчивости образуемого комплекса. Ионы d-элементов в степени окисления +2 (Mn, Fe, Co, Ni, Zn) имеют сходные физико-химические характеристики атомов (электронную структуру внешнего уровня, близкие радиусы ионов, тип гибридизации орбиталей, близкие значения констант устойчивости с биолигандами). Сходство физико-химических характеристик комплексообразователя определяет близость их биологического действия и взаимозаменяемость. Указанные выше переходные элементы стимулируют процессы кроветворения, усиливают процессы обмена веществ. Комплексы переходных элементов являются источником микроэлементов в биологически активной форме, обладающих высокой мембранопроницаемостью и ферментативной активностью. Они участвуют в защите организма от «окислительного стресса». Это связано с их участием в утилизации продуктов метаболизма, определяющих неконтролируемый процесс окисления (перекисями, свободными радикалами и другими кислородактивными частицами).
10.2. Неметаллы Галогены – типичные неметаллы, атомы которых на внешнем слое имеют семь электронов, расположенных на s- и p-подуровнях. Электронная конфигурация атомов галогенов описывается общей формулой ns2np5nd0 (исключение составляет фтор – 2s22p5). Атомы галогенов легко присоединяют один электрон, проявляя окислительные свойства и типичную для них степень окисления -1. Следует обратить внимание на тот факт, что свойства фтора отличаются от свойств остальных галогенов. Это обусловлено различием в электронных структурах атомов галогенов. Атомы хлора, брома, йода в отличие от фтора имеют незаполненные d-орбитали, на которых могут размещаться валентные электроны. Поэтому для них характерны положительные степени окисления (+1, +3, +5, +7), а для фтора – только -1. Галогены как окислители активно вступают в химические реакции с большинством элементов, но не соединяются непосредственно с кислородом и азотом. При проведении опытов следует помнить, что окислительная активность галогенов возрастает с уменьшением радиуса атома. Водородные соединения галогенов – это бесцветные газообразные вещества, водные растворы которых представляют собой соответствующие кислоты. HI – самая сильная кислота в ряду галогеноводородных кислот. Отрицательные ионы галогенов являются восстановителями и могут быть окислены различными окислителями, например, 2Br- - 2 ē = Br2. Восстановительная активность ионов галогенов от Cl- к I- возрастает с увеличением радиусов, а устойчивость соединений уменьшается. Так как серная кислота является сильным окислителем, а HBr и HI – наиболее сильными восстановителями из галогеноводородов, то последние в момент образования могут окисляться серной кислотой, при этом получаются свободные галогены: 8HI + H2SO4 = 4I2 + H2S + 4H2O. Для галогенов характерны кислородные соединения разной устойчивости, в которых они проявляют положительные степени окисления от +1 до +7. Например, кислородные кислоты хлора: HClO, HClO2, HClO3 и HClO4. Сила этих кислот возрастает с увеличением степени окисления, а окислительные свойства в этом направлении уменьшаются. Кислород и сера. К р-элементам VI группы относятся типические элементы – кислород О, сера S и элементы подгруппы селена – селен Se, теллур Те, полоний Ро. Электронная конфигурация атомов халькогенов описывается общей формулой ns2np4nd0 (исключение составляет кислород – 2s22p4). В ряду О - S - Se - Те - Ро уменьшаются энергии ионизации, увеличиваются размеры атомов и ионов. Это ослабляет неметаллические признаки элементов, а усиливает металлические: кислород – элемент-неметалл, полоний – элемент-металл. Окислительные свойства в ряду уменьшаются, а восстановительные – увеличиваются. У этих элементов возможны степени окисления от -2 до +6, причём с повышением заряда ядра более характерными становятся меньшие положительные. Первый элемент этой группы – кислород – самый распространённый элемент на Земле. Подобно фтору, кислород образует соединения почти со всеми элементами (кроме гелия, неона и аргона). Поскольку по электроотрицательности кислород уступает только фтору, степень окисления кислорода в большинстве соединений равна -2. Кроме того, кислород проявляет степени окисления +2 и +4, +1 и –1. Наиболее устойчива двухатомная молекула кислорода О2. Кислород при нагревании и в присутствии катализатора проявляет высокую химическую активность. С большинством простых веществ он взаимодействует непосредственно, образуя оксиды (соединения кислорода в степени окисления –2), и лишь по отношению к фтору проявляет восстановительные свойства. Важнейшим из оксидов является оксид водорода – Н2О. Вода составляет 50-99% массы любого живого существа, кровь человека содержит более 4/5 воды, мускулы – 35% воды. При средней продолжительности жизни (70 лет) человек выпивает около 25 т воды. Аллотропическую модификацию кислорода – озон О3 можно рассматривать как соединение О(+4) – ОО2. В естественных условиях озон образуется из атмосферного кислорода при грозовых разрядах, а на высоте 10-30 км – под действием ультрафиолетовых лучей. Озон задерживает вредное для жизни ультрафиолетовое излучение Солнца и поглощает инфракрасное излучение Земли, препятствуя её охлаждению. Если к молекуле О2 присоединить один или два электрона, то образуется надпероксид-ион или пероксид-ион соответственно, которые входят в состав перекисных соединений, называемых супероксидами и пероксидами. Пероксид водорода относится к слабым кислотам: Н2О2 = Н+ + НО2-. Сера. При химическом взаимодействии с другими элементами сера проявляет степени окисления –2, +4 и +6. Среди этих соединений в первую очередь следует рассмотреть сульфиды – бинарные соединения, содержащие серу в степени окисления –2. Как и оксиды, они подразделяются на основные, кислотные, амфотерные и нейтральные (как несолеобразующие оксиды). Сульфид водорода – Н2S – является типичным представителем кислотных сульфидов, водный раствор которого называется сероводородной кислотой и имеет слабокислую реакцию Н2S = H+ + HS-, HS- = H+ + S2-. Большинство сульфидов – сильные восстановители, что существенно отличает их свойства от свойств оксидов 2Н2S + H2SO3 = 3S +3H2O. Н2S + 4Br2 +4H2O = H2SO4 + 8HBr 3CuS + 14HNO3 = 3Cu(NO3)2 + 3H2SO4 + 8NO + 4H2O. Ион S2- может координировать вокруг себя от 1 до 8 нейтральных атомов серы, образуя комплексы – полисульфиды Na2S + 2S = Na2[S3]. В степенях окисления +4 и +6 сера образует оксиды – диоксид серы SO2 и триоксид серы SO3, являющиеся по своему характеру кислотными. Cжигая серу на воздухе или в кислороде, можно получить диоксид серы SO2, водный раствор которого представляет собой сернистую кислоту, диссоциирующую по схеме SO2 + H2O = H2SO3 ⇄ Н+ + HSO3- ⇄ 2Н+ + SO32-. H2SO3 – кислота средней силы, образует два типа солей: сульфиты и гидросульфиты. Сернистая кислота и её соли в химических реакциях проявляют как окислительные, так и восстановительные свойства. Оксид SO3 – ангидрид серной кислоты. Серная кислота H2SO4 – сильная двухосновная кислота, образующая средние и кислые сульфаты H2SO4 ⇄ Н+ + HSO4- ⇄ 2Н+ + SO42 Следует различать концентрированную и разбавленную кислоту. В разбавленной серной кислоте окислителем является ион Н+ Zn + H2SO4 = ZnSO4 + H2. В концентрированной серной кислоте окислителем является сера кислотного остатка, которая может восстанавливаться по одной из схем: SO42- + 4H+ + 2ē = SO2 + 2H2O; SO42- + 8H+ + 6ē = S + 4H2O; SO42- + 10H+ + 8ē = H2S + 4H2O.
Азот и фосфор. Главную подгруппу пятой группы составляют элементы: азот, фосфор, мышьяк, сурьма и висмут. Азот и фосфор – неметаллы, сурьма и висмут – металлы, а мышьяк – металлоид. Исходя из общей электронной конфигурации ns2np3nd0 (у азота 2s22p3), можно ожидать изменение степеней окисления от –3 до +5, причём к более устойчивым следует отнести нечётные степени окисления. А наиболее характерными являются –3, +3 и +5. От азота к висмуту размеры атомов и ионов увеличиваются, а энергии ионизации уменьшаются. Таким образом, в группе хорошо прослеживается общая тенденция к повышению основной и восстановительной активности и понижению кислотной и окислительной в ряду N – Bi, а также к концу группы характерность низшей положительной степени окисления. Следует обратить внимание на то, что все элементы не вытесняют водород из кислот и воды независимо от кислотности среды, а следовательно, относятся к неактивным восстановителям. В двухатомной молекуле азота атомы связаны тройной связью, что обусловливает инертность молекулярного азота при низких температурах. При повышенной температуре азот взаимодействует с металлами, водородом, галогенами и серой, образуя нитриды – соединения, содержащие азот в степени окисления –3. В соединениях с кислородом и фтором азот имеет степень окисления +3 (наиболее часто) и +5. Фосфор имеет несколько аллотропных модификаций (чёрный, белый и красный). Окислительная активность фосфора несколько ниже, чем у азота. В отличие от последнего, фосфор непосредственно не реагирует с водородом. Проявляя восстановительные свойства, фосфор чаще всего окисляется до степени окисления +5: P4 + 5O2 = P4O10, 3P4 + 20HNO3 + 8H2O = 12H3PO4 + 2NO, P4 + 3KOH + 3H2O = PH3 + 3KH2PO4. К водородным соединениям азота относятся: аммиак (NН3), гидразин (N2Н4) и гидроксиламин (NН2ОН). Водные растворы этих соединений имеют щелочную реакцию, благодаря наличию у атома азота неподеленной пары электронов. NН3 + Н2О = NН4+ + ОН- К = 1,8.10-5; N2Н4 + Н2О = N2Н5+ + ОН- К = 8,5.10-7; NН2ОН + Н2О = NН3ОН+ + ОН- К = 2,0.10-8. Они являются слабыми основаниями и, проявляя основные свойства, взаимодействуют с кислотами и кислотными оксидами, образуя соли аммония, гидразония и гидроксиламмония. Нагревая аммонийные соли, следует обратить внимание на зависимость продуктов разложения от окислительной активности аниона. Если анион окислитель, то образуется азот или оксид азота (І), если нет, то выделяется аммиак. Аммиак и гидразин проявляют, особенно последний, восстановительные свойства, окисляясь до азота 2NH3 + 3Cl2 = N2 + 6HCl; 4KMnO4 + 5N2H4 + 6H2SO4 = 5N2 + 4MnSO4 + 2K2SO4 + 16H2O. Гидроксиламин в щелочной среде сильный восстановитель, а в кислой – окислитель средней силы 2NH2OH + I2 + 2KOH = N2 + 2KI + 4H2O; 2NH2OH + 4FeSO4 + 3H2SO4 = 2Fe2(SO4)3 + (NH4)2SO4 + 2H2O. Свойства водородных соединений фосфора отличаются от свойств водородных соединений азота. Например, фосфин в отличие от аммиака в водном растворе показывает нейтральную реакцию. Электродонорные свойства фосфина проявляются только в реакциях с наиболее сильными кислотами РН3 + НI = РН4I. Фосфин и соли фосфина – сильные восстановители в любых средах. Изучая свойства оксидов N2O, NO, N2O3, NO2 и N2O5, надо учесть, что первые два относятся к несолеобразующим, а остальные к кислотным. Оксид азота (III) является ангидридом азотистой кислоты, оксид азота (V) – азотной кислоты, а оксид азота (IV) – смешанным ангидридом азотистой и азотной кислот. Проявляя кислотные свойства, эти оксиды взаимодействуют с основными оксидами и щелочами с образованием нитритов и нитратов. Оксид азота (III) проявляет окислительную и восстановительную активность, тогда как оксиды азота (IV) и (V) – только окислительную. Несолеобразующий оксид N2O при нагревании разлагается с выделением атомарного кислорода и является сильным окислителем: N2O → N2 + О. Азотная кислота (НNО3) – одна из самых сильных кислот. Она относится к сильным окислителям и реагирует почти со всеми металлами и многими неметаллами. В азотной кислоте не растворяется золото, платина, иридий и родий, а чистые железо, алюминий и хром в концентрированной кислоте на холоде «пассивируются». В реакции с металлами азот в азотной кислоте может восстановиться до различной степени окисления. Последняя зависит от концентрации кислоты и активности металла:
НNО3
NO2 NO N2O (N2) NН4NО3 активные Ме неактивные Ме активные Ме с активные Ме с разб. кис- с конц. кислотой, с разб. кислотой, конц. кислотой, лотой, Ме средней ак- большинство не- Ме средней ак- тивности с очень разб. металлов, тивности с конц. кислотой. кислотой,
Соли азотной кислоты (нитраты) хорошо растворимы в воде. При нагревании они разлагаются. Состав продуктов разложения зависит от положения металлов в ряду стандартных электродных потенциалов: до Mg MeNO2 + O2 Me(NO3)n Mg – Cu MeO + NO2 + O2 после Сu Me + NO2 + O2 Азотистая кислота (HNO2) относится к слабым кислотам (Кд = 5,1.10-4). Так же, как и оксид азота (III), азотистая кислота и нитриты в реакциях выступают в качестве окислителей и восстановителей. Оксиды фосфора Р4О6 и Р4О10 относятся к кислотным и являются ангидридами фосфористой и фосфорной кислот Р4О6 + 6Н2О = 4Н3РО3; Р4О10 + 6Н2О = 4Н3РО4. Ортофосфорная кислота (Н3РО4) является трёхосновной кислотой средней силы. Она образует три типа солей: ортофосфаты, гидрофосфаты и дигидрофосфаты. В реакциях окисления-восстановления активности не проявляет. Н3РО4 = Н+ + Н2РО4- К1 = 7,6.10-3; Н2РО4- = Н+ + НРО42- К2 = 6,2.10-8; НРО42- = Н+ + РО43- К3 = 4,2.10-13. Фосфористая кислота (Н3РО3) – двухосновная кислота средней силы, образующая два типа солей: фосфиты и гидрофосфиты. Фосфористая кислота (также как оксид фосфора (III)) проявляет восстановительные свойства, причём фосфор окисляется до степени окисления +5. Н(Н2РО3) = Н+ + Н(НРО3)- К1 = 1,6.10-2; Н(НРО3)- = Н+ + (НРО3)2- К2 = 2.10-7. Фосфорноватистая кислота (Н3РО2) – одноосновная кислота средней силы, образует при реакции со щелочами гипофосфиты. Н(Н2РО2) = Н+ + (Н2РО2)- К = 5,9.10-2. Она не имеет ангидрида. Сама кислота и её соли являются сильными восстановителями. В ряду Н3РО4 - Н3РО3 - Н3РО2 возрастает сила кислоты и её восстановительная способность.
Углерод и кремний. Главную подгруппу IV группы составляет углерод и кремний – неметаллы, германий, олово и свинец – металлы. Валентная электронная конфигурация атомов ns2np2nd0 (исключение углерод 2s22p2) свидетельствует о том, что характерными степенями окисления будут чётные -4, -2, +2, +4. Обратите внимание, что у углерода число валентных электронов и орбиталей совпадает, так же как и у водорода. Это одна из причин повышенной устойчивости цепей из атомов углерода, являющихся основой органических соединений. В пределах подгруппы возрастает склонность к низшим положительным степеням окисления и высшим гибридизациям, соответствующим координационным числам 4 и 6. В пределах подгруппы кислотные свойства убывают, а основные возрастают, а также возрастают восстановительные свойства. Элементы IV группы не растворяются в воде, но растворяются в кислотах – азотной, смеси азотной и плавиковой кислот, серной кислоте (свинец), образуя соответствующие кислоты (в высших степенях окисления) и соли (в низших степенях окисления); а также в щелочах (кроме углерода), образуя комплексные гидроксосоли. Углерод образует три гомосоединения (аллотропные модификации), отличающихся гибридизацией атомов: алмаз (sp3), графит (sp2) и карбин (sp), среди которых к простому веществу относят графит. Графит – наиболее реакционноспособная модификация углерода, образующая соединения включения – графитиды (КС8, CF и др.), сохраняющие макромолекулярные слои графита С2∞. При обычной температуре углерод инертен, однако при нагревании реагирует практически со всеми металлами. У кремния наиболее устойчива модификация типа алмаз (sp3 гибридизация), поэтому он также инертен при обычных условиях. Соединения углерода. Большую группу соединений углерода составляют карбиды. Среди кислородных соединений в первую очередь следует рассмотреть оксиды СО – монооксид и СО2 – диоксид. Первый из них имеет в молекуле тройную связь С≡О (d=0,113 нм, tпл= - 205 оС; tкип= - 191 оС) и поэтому достаточно инертен. Он не вступает в реакции взаимодействия с водой и кислотами, однако нее может быть отнесен к безразличным оксидам, так как реакция со щелочами приводит к образованию солей муравьиной кислоты – формиатов СО + NaOH = NaCOOH. В реакциях ОВР монооксид является сильным восстановителем Fe2O3 + 3CO = 2Fe + 3CO2, что используется в металлургической промышленности. Интересными являются реакции взаимодействия с металлами, приводящие к образованию карбонилов: Cr + 6CO = Cr(CO)6. Разложение карбонилов используют для получения особочистых металлов. В диоксиде углерод находится в sp-гибридном состоянии, поэтому его молекула линейна О≡С≡О (d=0,116 нм, tпл = -78 оС). В реакциях он ведет себя как кислотный оксид 2CO2 + Ca(OH)2 = Ca(HCO3)2; Ca(OH)2 + CO2 = CaCO3↓ + H2O; MgO + CO2 = MgCO3; BaCl2 + H2O + CO2 = BaCO3↓ + 2HCl; CO2 + H2O = BaCO3. Имеются немногочисленные реакции, в которых СО2 выступает в качестве окислителя СО2 + С = 2СО; 2СО2 + 5Mg = MgC2 + 4MgO. Обычно оба оксида в лаборатории получают разложением кислот HCOOH = H2O + CO; H2CO3 = H2O + CO2; H2C2O4 = H2O + CO2 + CO. В промышленности их получают сжиганием угля или разложением карбонатов 2C + O2 = 2CO; C + O2 = CO2; CaCO3 = CaO + CO2. Диоксид является ангидридом кислоты Н2СО3, которая называется угольной Она относится к малоустойчивым двухосновным кислотам, поэтому при растворении СО2 в воде существуют равновесия H2O + CO2 = CO2 .H2O = Н2СО3 = Н+ + НСО3- = 2Н+ + СО32-. Соли этой кислоты называются гидрокарбонатами и карбонатами и образуются в реакциях угольной кислоты со щелочами, амфотерными основаниями, основными оксидами и солями. Практически все гидрокарбонаты хорошо растворимы в воде, а из карбонатов к растворимым относятся только соли щелочных металлов и аммония. Угольную кислоту обычно получают либо растворением углекислого газа в воде, либо разложением карбонатов более сильными кислотами. Угольная кислота и её соли инертны в реакциях ОВР. Соединения кремния. В соединениях кремний, в отличие от углерода, всегда находится в sp3- или sp3d2-гибридном состоянии. Поэтому кислородные соединения обычно полимерны и построены из тетраэдров SiO4, связанных вершинами и редко рёбрами. Диоксид кремния является типичным примером такого соединения. Благодаря этому он тугоплавок, очень твёрд и химически стоек. В его структуре тетраэдры связаны между собой всеми вершинами. В кислотно-основных реакциях он ведёт себя как кислотный оксид, однако, не взаимодействует с водой, но может реагировать с плавиковой кислотой SiO2 + 6HF = H2[SiF6] + 2H2O, SiO2 + 2NaOH = Na2SiO3 + H2O, 2SiO2 + 3CaO = Ca3Si2O7. В ограниченном количестве реакций ОВР оксид выступает в качестве окислителя, кроме реакций со фтором SiO2 + 2Mg = Mg2Si + 2MgO, SiO2 + 2F2 = SiF4 + O2. Кремниевые кислоты могут быть получены только косвенным путём, так как оксид кремния (IV) не взаимодействует с водой. Ортокремниевая кислота H4SiO4 существует только в растворе и относится к очень слабым кислотам. При стоянии в растворах происходит полимеризация кислоты с образованием объёмистого осадка метакремниевой кислоты (H2SiO3)x. Более точно состав последней выражается формулой mSiO2.nH2O, поэтому говорить точном стехиометрическом составе осадка невозможно. Соли кремниевых кислот (силикаты) удобно получать при спекании оксида кремния или метакремниевой кислоты с оксидами, основаниями, амфотерными гидроксидами, карбонатами. За исключением ортосиликатов, анионы солей полимерны. Следует обратить внимание на своеобразие гидролиза метасиликатов, протекающего по уравнению 2SiO32- + Н2О = Si2O52- + 2ОН-. Наряду с простыми силикатами кремний образует большое количество сложных, в состав которых могут входить другие элементы, в первую очередь алюминий – алюмосиликаты. Эти соединения составляют значительную часть земной коры. Очень интересные общеизвестные свойства имеют стёкла, которые можно получить, например, по реакциям Na2CO3 + CaCO3 + 6SiO2 = Na2O.CaO.6SiO2 + 2CO2; Na2SO4 + C + CaCO3 + 6SiO2 = Na2O.CaO.6SiO2 + CO + CO2 + SO2.
Бор. Главную подгруппу третьей группы составляют элементы: бор, алюминий, галий, индий и таллий. Бор – неметалл, алюминий, галлий, индий и таллий – металлы. Исходя из общей электронной конфигурации ns2np1nd0 (у бора 2s22p1) и значений электроотрицательностей элементов этой группы, можно ожидать изменение степеней окисления от 0 до +3, причём к более устойчивым следует отнести нечётные степени окисления. От бора к таллию размеры атомов и ионов увеличиваются, а энергия ионизации уменьшается. Таким образом, прослеживается общая тенденция к повышению основной и восстановительной активности и понижению кислотной и окислительной в ряду В – Tl, а также к концу группы характерность низшей положительной степени окисления (у таллия +1). Для бора наиболее характерны соединения, в которых его степень окисления равна +3. Отрицательные степени окисления бора проявляются редко, с металлами бор обычно образует нестехиометрические соединения (М4В, М2В, МВ, М3В4 и другие). В обычных условиях бор весьма инертен и непосредственно взаимодействует только со фтором, а при нагревании окисляется кислородом, серой, хлором и даже азотом (в результате образуются ВF3, В2О3, В2S3, ВСl3, ВN). С водородом бор не взаимодействует. При сильном нагревании восстановительная активность бора проявляется в отношении таких устойчивых оксидов, как SiО2, Р2О5 и др. На бор действуют только горячие концентрированные азотная и серная кислоты, а также «царская водка», переводя его в Н3ВО3. Щёлочи при отсутствии окислителей на бор не действуют. Бинарные соединения бора (III) кислотные. Об этом свидетельствует характер их гидролиза и взаимодействия с основными соединениями, например: BCl3 + 3H2O = H3BO3 + 3HCl, BCl3 + 6NH3 = B(NH2)3 + 3NH4Cl. Бор с водородом образует многочисленные бораны ВхНу, простейший из них – диборан В2Н6. Бороводороды химически весьма активны: на воздухе самовоспламеняются и сгорают, разлагаются водой, спиртами и щелочами. Большинство имеют неприятный запах и очень ядовиты! Бинарные соединения бора, будучи кислотными, при взаимодействии с основными соединениями образуют анионные комплексы, например: 2KOH + B2O3 = 2KBO2 + H2O, 2LiH + (BH3)2 = 2Li[BH4], NaH + BF3 = Na[BF3H]. Оксоборат водорода (ортоборная кислота – Н3ВО3) – сравнительно мало растворим в воде, кислота – слабая, одноосновная. В отличие от обычных кислот её кислотные свойства обязаны не отщеплению протона, а присоединению ОН- - ионов: В(ОН)3 + Н2О = [В(ОН)4]- + Н+. При нагревании ортоборат водорода теряет воду, переходя в полимерные метабораты водорода НВО2, а затем – в В2О3. Большинство оксоборатов металлов – полимерные соединения, содержащие в составе полиметаборатные анионы (ВО2-)n. Более других используется тетраборат натрия Nа2В4О7.10Н2О. 10.3. Лабораторная работа. неметаллы
Дата добавления: 2014-10-17; Просмотров: 1082; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |