Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сущность адаптивных методов




 

При разработке экономических прогнозов на небольшие периоды времени наиболее важным является последний период функционирования системы, а не тенденции, сложившиеся в среднем на всем периоде предыстории. Свойство динамичности развития экономических систем в таких случаях преобладает над свойствами инерционности. Поэтому при краткосрочном прогнозировании более эффективными оказываются методы, в которых значимость уровней временного ряда убывает по мере их удаления от прогнозируемого периода.

Для повышения качества прогнозирования необходимо постоянно сопоставлять прогнозные оценки, полученные на основе модели и фактические реализации процесса. Ошибка прогноза наиболее объективно характеризует качество построенной модели, и все методы прогнозирования тем или иным способом стремятся использовать ее. В традиционных методах и моделях, например, многофакторных регрессионных моделях или кривых роста степень адаптации невелика, так как они, как правило, используют новую точку временного ряда лишь для перерасчета ее коэффициентов по увеличенному на единицу периоду предыстории. Использование новых данных может даже привести к замене ранее выбранной модели на другую. Фактическая величина ошибки прогноза в этом случае практически не учитывается.

Объективная необходимость повышения качества прогнозов привела к созданию и быстрому развитию адаптивных методов прогнозирования. Термин адаптация происходит от латинского слова adaptation – приспособление. В биологии адаптация означает процесс приспособления организма к внешним условиям, включая морфофизиологическую и поведенческую составляющие.

В экономическом прогнозировании термин «адаптация» стали использовать в конце 50-х, начале 60-х годов 20 века после появления работ Ч. Хольта, Р. Брауна, которые были посвящены проблемам экспоненциального сглаживания.

Адаптивными называются методы, осуществляющие последовательный во времени расчет прогнозируемого показателя с учетом сложившейся на момент прогнозирования тенденции и использующие в явном виде некоторый механизм приспособления модели к новым условиям, который позволяет учитывать различную информационную ценность уровней временного ряда и результат реализации прогноза, сделанного на предыдущем шаге.

Инструментом прогноза в адаптивных моделях, как и в кривых роста, является математическая модель с единственным фактором время. Первоначальная оценка параметров адаптивной модели обычно осуществляется по некоторой выборке исходного ряда. Все уровни ряда составляют как бы обучающуюся последовательность и используются для корректировки параметров текущей прогнозной модели. Отклонение прогнозных оценок от фактических значений уровней временного ряда, получаемых обычно на один шаг вперед, расценивается как ошибка прогнозирования. Эта ошибка поступает на вход системы (обратная связь) и учитывается в модели в соответствии с принятой в ней процедурой перехода из одного состояния в другое. Затем рассчитывается прогнозная оценка на следующий момент времени, и весь процесс повторяется вновь до исчерпания фактических уровней ряда. Таким образом, под воздействием поступающей на каждом шаге новой информации модель реагирует на изменения исследуемого процесса, приспосабливается к ним и к концу периода обучения отражает тенденцию развития процесса, существующего в текущий момент времени.

При изменении развития моделируемого процесса под влиянием внутренних или внешних факторов адаптивная модель вследствие заложенных в ней принципов в значительно более короткие сроки по сравнению с другими видами моделей может реагировать на такие изменения. В этом заключается основное достоинство методов адаптивного прогнозирования.

 

 
 

 

 


Рис. 5.1. Общий алгоритм построения адаптивных моделей

 

Оценивание коэффициентов адаптивной модели обычно осуществляется на основе рекуррентного метода, который отличается от метода МНК, метода максимального правдоподобия и других методов тем, что не требует повторения всего объема вычислений при появлении новых данных и позволяет получить текущие значения параметров на основе их предыдущих значений и текущих уровней временного ряда.

На рис.5.1. приведен общий алгоритм построения адаптивных моделей прогнозирования. Данная схема, отражающая основные этапы построения адаптивных моделей, может видоизменяться вследствие использования в конкретных методах различных критериев адаптации и правил перехода.

Скорость реакции модели на изменения в динамике процесса характеризует так называемый параметр адаптации. Процедура «обучения» модели по ретроспективным данным происходит, как правило, в два этапа. На первом этапе определяют наилучшее значение параметра адаптации, на втором – коэффициенты модели прогнозирования с использованием полученного значения параметра адаптации. Параметр адаптации должен быть выбран таким образом, чтобы обеспечивалось адекватное отображение тенденции при одновременной фильтрации случайных отклонений. Значение параметра адаптации может быть определено на основе эмпирических данных, выведено аналитическим способом или получено на основе метода проб. В качестве критерия оптимальности при выборе параметра адаптации обычно принимают критерий минимума среднего квадрата ошибок прогнозирования.

Время в адаптивных моделях в отличие от кривых роста не является причинно определяющим фактором развития исследуемого процесса. Оно отражает эволюцию всего комплекса условий протекания процесса, является как бы «представителем» всей совокупности причинных факторов.

Адаптивные модели вследствие заложенных в них принципов построения в значительно более короткие сроки реагируют на изменения развития моделируемого процесс, чем другие виды моделей. В этом и заключается основное достоинство адаптивных моделей прогнозирования. Адаптивные модели в силу своего механизма построения дают более надежные результаты при кратковременном прогнозировании. Неоднородность временных рядов, значительно снижающая эффективность многих методов, в адаптивных моделях находит отражение в эволюции их параметров и структуры.




Поделиться с друзьями:


Дата добавления: 2014-10-22; Просмотров: 1983; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.