КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Числовые характеристики
Дискретной случайной величиной называется такая переменная величина, которая может принимать конечную или бесконечную совокупность значений, причем принятие ею каждого из значений есть случайное событие с определенной вероятностью. Дискретные случайные величины.
4.1. Определение дискретной случайной величины.
Величина, которая в результате испытания может принять то или иное значение, заранее неизвестно, какое именно, называется случайной величиной. Соотношение, устанавливающее связь между отдельными возможными значениями случайной величины и соответствующими им вероятностями, называется законом распределения дискретной случайной величины. Если обозначить возможные числовые значения случайной величины Х через х, х,... ..., а через вероятность появления значения , то дискретная случайная величина полностью определяется следующей таблицей 4.1: Таблица 4.1
где значения х, х,..., ,записываются, как правило, в порядке возрастания. Таблица называется законом или рядом распределения дискретной случайной величины Х. Поскольку в верхней строчке ряда распределения записаны все значения случайной величины Х, то нижняя строчка обладает тем свойством, что (4.1) Графическое изображение ряда распределения называется многоугольником распределения (полигоном распределения) (рис. 4.1):
Рис.4.1. Для этого по оси абсцисс откладывают значения случайной величины, по оси ординат - вероятности значений. Полученные точки соединяют отрезками прямой. Построенная фигура и называется многоугольником распределения вероятностей. Дискретная случайная величина может быть задана функцией распределения. Функцией распределения случайной величины Х называется функция F (x), выражающая вероятность того, что Х примет значение, меньшее чем х: (4.2) - здесь для каждого значения х суммируются вероятности тех значений , которые лежат левее точки х. Функция F (x) есть неубывающая функция; Для дискретных случайных величин функция распределения F(x) есть разрывная ступенчатая функция, непрерывная слева (рис. 4.2):
F(x)
p3 p2 p1
x1 x2 0 х3 x j
Рис.4.2.
Вероятность попадания случайной величины Х в промежуток от до (включая ) выражается формулой:
(4.3)
Математическим ожиданием дискретной случайной величины называется: (4.4) В случае бесконечного множества значений в правой части (4.4) находится ряд, и мы будем рассматривать только те значения Х, для которых этот ряд абсолютно сходится. М(Х) представляет собой среднее ожидаемое значение случайной величины. Оно обладает следующими свойствами: 1) М(С)=С, где С=const 2) M (CX)=CM (X) (4.5) 3) M (X+Y)=M(X)+M(Y), для любых Х и Y. 4) M (XY)=M (X)M(Y), если Х и Y независимы. Для оценки степени рассеяния значений случайной величины около ее среднего значения M(X)= а вводятся понятия дисперсии D(X) и среднего квадратического (стандартного) отклонения . Дисперсией называется математическое ожидание квадрата разности (X-), т.е.: D(X)=M(X-)2=pi, где =М(X); определяется как квадратный корень из дисперсии, т.е. . Для вычисления дисперсии пользуются формулой: (4.6) Свойства дисперсии и среднего квадратического отклонения:
1) D(C)=0, где С=сonst 2) D(CX)=C2D(X), (CX)= çCç(X) (4.7) 3) D(X+Y) =D(X)+D(Y),
если Х и У независимы. Размерность величин и совпадает с размерностью самой случайной величины Х, а размерность D(X) равна квадрату размерности случайной величины Х. 4.3. Математические операции над случайными величинами.
Пусть случайная величина Х принимает значения с вероятностями а случайная величина Y- значения с вероятностями Произведение КX случайной величины Х на постоянную величину К - это новая случайная величина, которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные произведениям на К значений случайной величины Х. Следовательно, ее закон распределения имеет вид таблица 4.2: Таблица 4.2
Квадрат случайной величины Х, т.е. , - это новая случайная величина,которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные квадратам ее значений. Сумма случайных величин Х и У - это новая случайная величина, которая принимает все значения вида с вероятностями , выражающими вероятность того, что случайная величина Х примет значение а У - значение , то есть (4.8) Если случайные величины Х и У независимы, то: (4.9) Аналогично определяются разность и произведение случайных величин Х и У. Разность случайных величин Х и У - это новая случайная величина, которая принимает все значения вида , а произведение - все значения вида с вероятностями, определяемыми по формуле (4.8), а если случайные величины Х и У независимы, то по формуле (4.9). 4.4. Распределения Бернулли и Пуассона.
Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям: 1. Каждое испытание имеет два исхода, называемые успех и неуспех. Эти два исхода - взаимно несовместные и противоположные события. 2. Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q. 3. Все n испытаний - независимы. Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний. Вероятность того, что в n независимых повторных испытаниях, в каждом из которых вероятность появления события равна , событие наступит ровно m раз (в любой последовательности), равна (4.10) где q=1-р. Выражение (4.10) называется формулой Бернулли. Вероятности того, что событие наступит: а) менее m раз, б) более m раз, в) не менее m раз, г) не более m раз - находятся соответственно по формулам: Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли (таблица 4.3). Таблица 4.3
Так как правая часть формулы (4.10) представляет общий член биноминального разложения , то этот закон распределения называют биномиальным. Для случайной величины Х, распределенной по биноминальному закону, имеем:
M(X)=nр (4.11) D(X)=nрq (4.12)
Если число испытаний велико, а вероятность появления события р в каждом испытании очень мала, то вместо формулы (4.10) пользуются приближенной формулой: (4.13) где m - число появлений события в n независимых испытаниях, (среднее число появлений события в n испытаниях). Выражение (4.13) называется формулой Пуассона. Придавая m целые неотрицательные значения m=0,1,2,...,n, можно записать ряд распределения вероятностей, вычисленных по формуле (4.13), который называется законом распределения Пуассона (таблица 4.4): Таблица 4.4
Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства. Например, число машин, прибывших на автомойку в течении часа, число дефектов на новом отрезке шоссе длиной в 10 километров, число мест утечки воды на 100 километров водопровода, число остановок станков в неделю, число дорожных происшествий. Если распределение Пуассона применяется вместо биномиального распределения, то n должно иметь порядок не менее нескольких десятков, лучше нескольких сотен, а nр< 10. Математическое ожидание к дисперсии случайной величины, распределенной по закону Пуассона, совпадают и равны параметру , которая определяет этот закон, т.е.
M(X)=D(X)=n×p=. (4.14)
Дата добавления: 2014-10-22; Просмотров: 549; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |