Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрическая вероятность




Решение.

Опыт заключается в случайном отборе k образцов из K единиц данного товара. Общее число исходов равновозможных испытаний равно . Событие А состоит в том, что из k отобранных ровно l будут удовлетворять указанным требованиям. Число вариантов отбора качественных образцов равно , число вариантов отбора некачественных образцов равно , число исходов, благоприятствующих событию А, согласно правилу произведения равно . Искомая вероятность определяется по формуле .

Пусть на отрезок случайным образом бросают точку. Пространство элементарных событий в этом эксперименте – все точки отрезка . Поскольку множество элементарных равновозможных событий несчетно, то вероятность попадания в указанную точку отрезка . Рассмотрим событие А, соответствующее попаданию брошенной точки на отрезок , . Очевидно, что вероятность события А пропорциональна длине отрезка

.

Коэффициент найдем из условия нормировки

, следовательно .

В общем случае геометрическая вероятность находится по формуле

,

где в знаменателе мера всей фигуры, в числителе мера части фигуры, на которую бросается точка.




Поделиться с друзьями:


Дата добавления: 2014-10-22; Просмотров: 371; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.