КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Средняя арифметическая
Самым распространенным видом средней, применяемой в социально-экономическом анализе, является средняя арифметическая. Средняя арифметическая простая: ,где
Простая средняя арифметическая используется в расчете популярного фондового индекса Доу-Джонса, для определения среднего остатка оборотных средств по балансу, среднегодовой численности населения и др. Средняя арифметическая взвешенная: , где f – частота. Данная формула широко применяется в расчетах экономических показателей. Например, надо определить среднюю заработную плату работника АО, имея данные по отдельным филиалам АО (табл. 4.1.): Таблица 4.1 Сведения о заработной плате
грн. Средняя арифметическая величина может быть дробным числом, если даже индивидуальные значения признака могут принимать только целые значения (дискретный признак). Ничего «предосудительного» для метода средних в этом не заключено; из сущности средней не вытекает, что она обязана быть реальным значением признака, которое могло бы встретиться у какой-либо единицы совокупности. Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины в качестве значения признака в группах принимают середины этих интервалов, т.е. исходят из гипотезы о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака надо определить экспертным путем исходя из сущности, свойств признака и совокупности. Свойства арифметической средней величины Знание некоторых математических свойств средней арифметической полезно как при ее использовании, так и при ее расчете. 1. Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю. Доказательство: Примечание. Для средней взвешенной сумма взвешенных отклонений равна нулю. 2. Если каждое индивидуальное значение признака умножить или разделить на постоянное число, то и средняя увеличится или уменьшится во столько же раз. Доказательство: Вследствие этого свойства индивидуальные значения признака можно сократить в с раз, произвести расчет средней и результат умножить на с. 3. Если к каждому индивидуальному значению признака прибавить или из каждого значения вычесть постоянное число, то средняя величина возрастет или уменьшится на это же число. Доказательство: Это свойство полезно использовать при расчете средней величины из многозначных и слабоварьирующих значений признака. 4. Если веса средней взвешенной умножить или разделить на постоянное число, средняя величина не изменится. Доказательство: Используя это свойство, при расчетах следует сокращать веса на их общий сомножитель либо выражать многозначные числа весов в более крупных единицах измерения. 5. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа. Доказательство. Составим сумму квадратов отклонений от переменной а: Чтобы найти экстремум этой функции, нужно ее производную по а приравнять нулю: Отсюда имеем: Таким образом, экстремум суммы квадратов отклонений достигается при . Так как логически ясно, что максимума функция не может иметь, этот экстремум является минимумом.
Дата добавления: 2014-10-22; Просмотров: 356; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |