Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интеграл с переменным верхним и постоянным нижним пределами и его свойства




Вычисление определенного интеграла

Определение 4. Пусть функция y = f (x) непрерывна на [ a;b ]. Тогда она непрерывна на [ a;x ] для любого [ a;b ]. Следовательно, на [ a;b ] определена функция , которая называется интегралом с переменным верхним пределом.

Свойства этой функции сформулируем в виде теоремы.

Теорема 3. Пусть функция f (x) непрерывна на [ a;b ]. Тогда функция обладает свойствами:

1) непрерывна на [ a;b ];

2) имеет производную F' (x) в каждой точке x Î [ a;b ], удовлетворяющую равенству .

Доказательство: Вычислим приращение функции F (x), причем D x возьмем таким, чтобы точка x + D x Î [ a;b ].

Тогда

Применим к полученному интегралу теорему о среднем значении определенного интеграла. То есть на [ x; x + Dx ] существует такое число c, в котором выполняется равенство:

Значит, D F = f (cDx, где c Î [ x; x + Dx ].

Если Dx ® 0, то c ® x (так как x < c < x+Dx).

Поэтому, в силу непрерывности f (x), получим f (c) ® f (x) при Dx ®0.

Таким образом, DF ®0 при Dx ®0, что доказывает непрерывность F (x).

Кроме того, вычисляя предел отношения DF к Dx при Dx ® 0, получим:

То есть существует конечный предел отношения DF к Dx при Dx ®0. Что означает существование производной F' (x) = f (x).

Из этой теоремы следует, что функция является первообразной для функции f (x).

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 483; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.