КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Расчет количества ребер m(G) графа G
Расчет количества вершин n(G) графа G Тема: «Расчет числовых характеристик графов». Расчетно-графическая работа №6 1 Теоретическая часть Пусть задан граф G (рисунок 6.1). Рисунок 6.1 ― Граф G Расчет выполняется методом визуального анализа графа G. В итоге расчета имеем:
Расчет выполняется методом визуального анализа графа G. В итоге расчета имеем:
Расчет степеней вершин δi графа G. Расчет выполняется методом визуального анализа графа G с целью определения количества ребер (дуг) инцидентных вершине xi. Результаты расчета сведены в таблицу 6.1.
Таблица 6.1 - Результаты расчета степеней вершин графа G
Расчет числа компонент связности æ(G)
где ||1|| - единичная матрица (рисунок 6.2), ||H(xi)|| - матрица смежности графа G, ||Hp(xi)|| - матрица смежности графа G, возведенная в p -ую степень.
Рисунок 6.2 ― Единичная матрица для графа G Для возведения в степень матрицы смежности используют правило умножения булевых матриц. На рисунке 6.3 правило умножения булевых матриц прокомментировано графически.
Первая строка на второй столбец Обозначения: - дизъюнкция (см. таблицу истинности в [1]); - конъюнкция (см. таблицу истинности в [1]) Рисунок 6.3 ― Пример умножения булевых матриц 4х4
Построим матрицы смежности графа G (рисунок 6.4).
Рисунок 6.4 ― Матрица смежности ||H|| графа G
Возведем матрицу смежности ||H|| в квадрат, т.е. умножим ее саму на себя. Получим ||H2|| (рисунок 6.5).
Рисунок 6.5 ― Матрица ||H2|| графа G
Возведем матрицу смежности ||H|| в третью степень. Получим ||H3|| (рисунок 6.6).
Рисунок 6.6 ― Матрица ||H3|| графа G
Анализ матриц ||H2|| и ||H3|| показывает, что никаких изменений в ||H3|| по сравнению ||H2|| нет. Значит процесс вычислений завершен. Матрица достижимости ||Q3|| (рисунок 6.7) рассчитывается следующим образом:
Рисунок 6.7 ― Матрица ||Q2|| графа G
Поскольку матрица ||Q2|| содержит два блока: один – 3х3 элемента, другой – 6х6 элементов, то граф G содержит два связных подграфа:
где X1={x1,x2,x3}, X2={x4,x5,x6,x7,x8,x9}. Таким образом, для исходного графа G=<X,H> число компонент связности равно æ(G)=2.
Расчет цикломатического числа λ(G) графа G Рассчитаем цикломатическое число графа G, т.е. наименьшее число ребер, удаление которых приведет к графу без циклов и петель. Расчет выполним по формуле:
В качестве примера удалим на графе G четыре ребра (1,3), (4,5), (5,6), (8,9). Получим граф на рисунке 6.8.
Рисунок 6.8 ― Граф без циклов и петель
Расчет хроматического числа γ(G) графа G Рассчитаем хроматическое число графа G, т.е. наименьшее число красок при применении которых для раскраски вершин графа две любые смежные вершины графа G, не будут окрашены в один цвет. Для выполнения расчета воспользуемся двумя оценочными соотношениями. Одно из них задает левую границу для γ(G), min возможное значение γ(G), т.е. γmin(G):
1) полный n -вершинный граф имеет γmin(G)=n; 2) пустой граф имеет γmin(G)=1; 3) граф с циклом (т.е. хотя бы одним) четной длины имеет γmin(G)=2; 4) граф с циклом нечетной длины имеет γmin(G)=3; 5) граф-дерево имеет γmin(G)=2. Другое оценочное соотношение задает правую границу для γ(G), max необходимое значение γ(G), т.е. γmax(G): .
Начинаем проверку с вычисления γmin(G). Поскольку в графе G есть цикл нечетной длины пробуем раскрасить граф тремя красками (рисунок 6.9). Рисунок 6.9 ― Раскраска графа G синей, желтой и красной красками
Вывод: трех красок, т.е. γmin(G) =3 оказалось достаточно:
.
Если бы трех красок оказалось недостаточно, следовало бы γmin(G) увеличить на единицу и повторить раскраску заново. И так далее, до получения желаемого результата. Однако таких красок не должно быть больше чем γmax(G).
Дата добавления: 2014-10-31; Просмотров: 2161; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |