КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Локальная и интегральная теоремы Муавра - Лапласа
Имеет место теорема. Теорема. (Локальная теорема Муавра-Лапласа) Если вероятность наступления события в каждом испытании постоянна и отлична от 0 и 1, то вероятностьтого, что событие произойдет т раз в независимых испытаниях при достаточно большом числе , приближенно равна , (24) где - функция Гаусса (25) и . (26) Чем больше , тем точнее приближенная формула (24). Как правило, на практике используется при условии Функция табулирована, ее значения приведены в таблице 1 приложения [4, с.553-554]. Пользуясь данной таблицей, необходимо использовать свойства функции . 1. Функция является четной, т.е. . 2. Функция - монотонно убывающая при положительных значениях х, причем, при . Считают, что при . Теорема. (Интегральная теорема Муавра-Лапласа) Если вероятность наступления события в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что число т наступления события в независимых испытаниях заключено в пределах от до (включительно), при достаточно большом числе , приближенно равна , (27) где - функция Лапласа, (28) и . (29) Чем больше , тем точнее приближенная формула (27). Как правило, на практике используется при условии Функция табулирована, ее значения приведены в таблице 2 приложения [4, с.555]. Пользуясь данной таблицей, необходимо использовать свойства функции 1. Функция является нечетной, т.е. 2. Функция - монотонно возрастающая при положительных значениях х, причем, при . Считают, что при . Замечание. Приближенными формулами Муавра – Лапласа 24 и 27 пользуются в случае, при Если же , то эти формулы приводят к довольно большим погрешностям. Рассмотрим следствие интегральной теоремы Муавра-Лапласа. Следствие. Если вероятность наступления события в каждом испытании постоянна и отлична от 0 и 1, то при достаточно большом числе независимых испытаний вероятность того, что: а) число т наступлений события отличается от произведения не более, чем на величину (по абсолютной величине), т.е. ; (30) б) частость события заключена в пределах от до (включительно), т.е. , (31) где ;(32) в) частость события отличается от его вероятности не более, чем на величину (по абсолютной величине), т.е. . (33) [4, с.73-77] Пример 13. Вероятность наступления события А в каждом из 900 независимых испытаний равна . Найдите вероятность того, что событие А произойдет: а) 710 раз; б) от 710 до 740 раз. Решение. а) Дано: , , , . Так как , то воспользовавшись формулами 24-26, четностью функции и таблицей 1 приложения [4, с.553-554], получаем: б) Дано: , , , , . Так как , то воспользовавшись формулами 27-29, нечетностью функции и таблицей 2 приложения [4, с.555], получаем: Ответ: а) 0,0236; б) 0,7993.
Список используемой литературы: 1. Андрухаев, Хазерталь Махмудович. Сборник задач по теории вероятностей [Текст]: учебное пособие для студентов пед. ин-тов по спец. 2104 «Математика», «Математика с доп. спец. Физика» и 2105 «Физика с доп. спец. математика»/ Под ред. А.С. Солодовникова. –М.: Просвещение, 1985. -160 с. 2. Гмурман, Владимир Ефимович. Руководство к решению задач по теории вероятностей и математической статистике [Текст]: учебное пособие для втузов / В. Е. Гмурман. - 2-е изд., перераб. и доп. - М.: Высшая школа, 1975. - 333 с. 3. Карасев, Анатолий Иванович. Теория вероятностей и математическая статистика [Текст]: учебник для экономических специальностей вузов/ А.И. Карасев. Изд. 3-е, перераб. И доп. М., «Статистика», 177. -279 с. 4. Кремер, Наум Шевелевич. Теория вероятностей и математическая статистика [Текст]: учебник для вузов / Н. Ш. Кремер. - 2-е изд., перераб. и доп. - М.: ЮНИТИ-ДАНА, 2006. - 573 с.
Дата добавления: 2014-10-31; Просмотров: 478; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |