КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вектор скорости точки
Одной из кинематических характеристик движения точки является векторная величина, называемая скоростью точки. Скорость точки - это векторная величина, характеризующая быстроту и направление движения точки в данной системе отсчета. Введем сначала понятие о средней скорости точки за какой-нибудь промежуток времени. Отношение вектора перемещения точки к соответствующему промежутку времени дает векторную величину, называемую средней по модулю и направлению скоростью точки за промежуток времени :
Направлен вектор так же, как и вектор , т.е. при криволинейном движении вдоль хорды , в сторону движения точки, а при прямолинейном движении – вдоль самой траектории. Очевидно, что чем меньше промежуток времени , тем величина будет точнее характеризовать движение точки. Поэтому скоростью точки в данный момент времени называется векторная величина , к которой стремится скорость при стремлении промежутка времени к нулю.
Предел отношения при представляет собой первую производную от вектора по аргументу и обозначается , тогда
Итак, вектор скорости точки в данный момент времени равен первой производной от радиус-вектора точки по времени. Так как предельным направлением секущей является касательная, то вектор скорости в данный момент времени направлен по касательной к траектории точки в сторону движения. Размерность скорости , т.е. . Единицы измерения .
Дата добавления: 2014-11-25; Просмотров: 623; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |