КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример решения задачи 1.1
Жесткая пластина (рис. 1.2) имеет в точке неподвижную шарнирную опору на катках. Все действующие нагрузки и размеры показаны на рисунке. Определить реакции в точках и , вызываемые действующими нагрузками, если , , , , , , . Решение. 1. Рассмотрим равновесие пластины. Проведем координатные оси и изобразим действующие на пластину силы: силу , пару сил с моментом , натяжение троса (по модулю ) и реакции связей , , (реакцию неподвижной шарнирной опоры изображаем двумя ее составляющими, реакция шарнирной опоры на катках направлена перпендикулярно опорной плоскости).
Таблица 1.1
Рис. 1.1 Схемы к задаче 1.1
Рис. 1.2. Пример решения задачи 1.1.
2. Для получения плоской системы сил составим три уравнения равновесия. При вычислении момента силы относительно точки воспользуемся теоремой Вариньона, т.е. разложим силу на составляющие и (, ) и учтем, что . Получим: , ; , ; , . Подставив в составленные уравнения числовые значения заданных величин и решив эти уравнения, определим искомые реакции. Ответ: , , . Знаки указывают, что силы и имеют направления, противоположенные показанным на рис. 1.2. Задача 1.2. Задача 1.2 на равновесие твердого тела (вала), находящегося под действием системы сил, произвольно расположенных в пространстве. Порядок решения этой задачи такой же, как и в предыдущих примерах, за исключением того, что для определения искомых величин надо составить шесть уравнений равновесия. Если силы не образуют сходящуюся систему, а расположены как угодно в пространстве, то их можно привести к одному центру, с добавлением главного момента (согласно теореме Пуансо). При этом получим пространственную систему сходящихся сил и систему пар, расположенных в разных плоскостях. Условия равновесия, заключаются в том, что главный вектор и главный момент относительно центра приведения равняется нулю, это и есть главная теорема статики. Следует иметь в виду, что при нахождении проекции силы на ось часто бывает проще сначала найти ее проекцию на координатную плоскость, в которой расположена эта ось, а затем найденную проекцию спроецировать на данную ось. Точно также при определении момента силы относительно оси нередко бывает удобно разложить эту силу на взаимно перпендикулярные составляющие, одна из которых параллельна какой-нибудь координатной оси, затем применить теорему Вариньона. Исходные данные для различных вариантов даны в табл. 1.2, а варианты схем приведены на рис. 1.3. Условия: 1.2.1. На горизонтальный вал, который может вращаться в подшипниках А и В, насажены шкив 1 радиусом r1 = 12 см и шкив 2 радиусом r2 = 16 см. Ветви ремней каждого шкива параллельны между собой и образуют соответственно углы α1 с горизонталью и α2 с вертикалью. Пренебрегая весом шкива и вала, найти натяжение ведущей и ведомой ветви ремня, а также реакции подшипников при равновесии вала. Примечание. Натяжение ведущей ветви ремня принять вдвое больше натяжения ведомой (T1 = 2t1; T2 = 2t2). 1.2.2. На горизонтальный вал насажены колесо 1 радиусом r1 = 20 см, колесо 2 радиусом r2 = 30 см и прикреплен перпендикулярно оси вала горизонтально рычаг СD длиной l = 20 см. К одному колесу приложена сила F, образующая с горизонталью угол α1, а к другому – сила Т2, образующая с вертикалью угол α2; к рычагу приложена вертикальная сила Р. Пренебрегая весом вала, колес и рычага, определить силу Р, при которой вал находится в равновесии, а также реакции подшипников А и В. 1.2.3. На горизонтальный вал насажено колесо радиусом r1 = 15 см и прикреплен перпендикулярно оси вала рычаг СD длиной l = 20 см, образующий с горизонтальной плоскостью угол α2. Веревка, намотанная на колесо и натягиваемая грузом F, сходит с колеса по касательной, наклоненной под углом α1 к горизонту. Пренебрегая весом вала, колеса и рычага и трением в блоке, определить вертикальную силу Р, при которой вал находится в равновесии, а также реакции подшипников А и В. Таблица 1.2
Рис. 1.3. Схемы к задаче 1.2.- пространственная система сил.
Дата добавления: 2014-11-25; Просмотров: 473; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |