![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример решения задачи 1.1
Жесткая пластина Решение. 1. Рассмотрим равновесие пластины. Проведем координатные оси
Таблица 1.1
Рис. 1.1 Схемы к задаче 1.1
Рис. 1.2. Пример решения задачи 1.1.
2. Для получения плоской системы сил составим три уравнения равновесия. При вычислении момента силы Получим:
Подставив в составленные уравнения числовые значения заданных величин и решив эти уравнения, определим искомые реакции. Ответ: Задача 1.2. Задача 1.2 на равновесие твердого тела (вала), находящегося под действием системы сил, произвольно расположенных в пространстве. Порядок решения этой задачи такой же, как и в предыдущих примерах, за исключением того, что для определения искомых величин надо составить шесть уравнений равновесия. Если силы не образуют сходящуюся систему, а расположены как угодно в пространстве, то их можно привести к одному центру, с добавлением главного момента (согласно теореме Пуансо). При этом получим пространственную систему сходящихся сил и систему пар, расположенных в разных плоскостях. Условия равновесия, заключаются в том, что главный вектор и главный момент относительно центра приведения равняется нулю, это и есть главная теорема статики. Следует иметь в виду, что при нахождении проекции силы на ось часто бывает проще сначала найти ее проекцию на координатную плоскость, в которой расположена эта ось, а затем найденную проекцию спроецировать на данную ось. Точно также при определении момента силы относительно оси нередко бывает удобно разложить эту силу на взаимно перпендикулярные составляющие, одна из которых параллельна какой-нибудь координатной оси, затем применить теорему Вариньона. Исходные данные для различных вариантов даны в табл. 1.2, а варианты схем приведены на рис. 1.3. Условия: 1.2.1. На горизонтальный вал, который может вращаться в подшипниках А и В, насажены шкив 1 радиусом r1 = 12 см и шкив 2 радиусом r2 = 16 см. Ветви ремней каждого шкива параллельны между собой и образуют соответственно углы α1 с горизонталью и α2 с вертикалью. Пренебрегая весом шкива и вала, найти натяжение ведущей и ведомой ветви ремня, а также реакции подшипников при равновесии вала. Примечание. Натяжение ведущей ветви ремня принять вдвое больше натяжения ведомой (T1 = 2t1; T2 = 2t2). 1.2.2. На горизонтальный вал насажены колесо 1 радиусом r1 = 20 см, колесо 2 радиусом r2 = 30 см и прикреплен перпендикулярно оси вала горизонтально рычаг СD длиной l = 20 см. К одному колесу приложена сила F, образующая с горизонталью угол α1, а к другому – сила Т2, образующая с вертикалью угол α2; к рычагу приложена вертикальная сила Р. Пренебрегая весом вала, колес и рычага, определить силу Р, при которой вал находится в равновесии, а также реакции подшипников А и В. 1.2.3. На горизонтальный вал насажено колесо радиусом r1 = 15 см и прикреплен перпендикулярно оси вала рычаг СD длиной l = 20 см, образующий с горизонтальной плоскостью угол α2. Веревка, намотанная на колесо и натягиваемая грузом F, сходит с колеса по касательной, наклоненной под углом α1 к горизонту. Пренебрегая весом вала, колеса и рычага и трением в блоке, определить вертикальную силу Р, при которой вал находится в равновесии, а также реакции подшипников А и В. Таблица 1.2
Рис. 1.3. Схемы к задаче 1.2.- пространственная система сил.
Дата добавления: 2014-11-25; Просмотров: 473; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |