КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример решения задачи 2.3
Условие. Кривошип ОА длиной R=64 см вращается вокруг неподвижной оси О с постоянной угловой скоростью w=1 рад/с и приводит в движение шатун АВ длиной L=72 см и ползун В. Для положения механизма, заданного значениями углов a=45°, b=30,° найти скорость и ускорение ползуна В. Схема механизма приведена на рис. 2.8.
Рассмотрим движение шатуна в данный момент времени как вращательное относительно оси, проходящей через мгновенный центр скоростей Р перпендикулярно неподвижной плоскости, по отношению к которой происходит плоское движение. Угловая скорость шатуна в этом случае определяется из соотношения , а скорость ползуна В как вращательная – из соотношения . Расстояния АР и BP определим из решения треугольника АВР, применив теорему синусов. Для заданного положения механизма получим , откуда Подставив найденные значения расстояний в соответствующие формулы, получим . Направления скоростей показаны на рис. 2.8. 2. Для определения ускорения ползуна B воспользуемся векторным равенством: , (1)
где – ускорение ползуна В; – ускорение точки А, выбранной за полюс; – осестремительное (нормальное) ускорение точки В при ее вращении вокруг полюса А; – вращательное (касательное) ускорение точки В при ее вращении вокруг полюса А. Ускорение точки А кривошипа при равномерном вращении вокруг неподвижной оси О состоит только из осестремительной составляющей, модуль которой определяется формулой . Вектор ускорения точки А направлен к оси вращения (рис.2.9), . Осестремительное ускорение точки В при ее вращении вокруг полюса А: .
Проведем вектор ускорения точки В, предполагая, что он направлен противоположно скорости точки В. Спроектируем векторное равенство (1) на ось u, перпендикулярную ускорению и проходящую через точки А и В, получим . Отсюда Знак минус показывает, что истинное направление ускорения точки В противоположно принятому. 3. КОНТРОЛЬНАЯ РАБОТА ПО РАЗДЕЛУ «ДИНАМИКА» Задача 3.1 Задание относится к прямой задаче динамики точки: по известным (заданным) силам и начальным условиям движения требуется определить движение точки, получив уравнения движения. Для этого следует изобразить движущееся тело (точку) в произвольный момент времени, показать все действующие на тело (заданные) силы, освободиться от связей, заменив их действие соответствую-щими реакциями. Затем составить дифференциальные уравнения движения (два при криволинейном и одно при прямолинейном движениях) и проинтегрировать их. Значения постоянных интегрирования определить из начальных условий. Исходные данные для различных вариантов даны в табл. 3.1., а схемы приведены на рис. 3.1. Таблица 3.1
Дата добавления: 2014-11-25; Просмотров: 999; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |