Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример решения задачи 3.1




Условие. Груз весом Р движется вниз по шероховатой наклонной плоскости, составляющей угол a=30°с горизонтом. Коэффициент трения скольжения груза о плоскость f=0,16. В начальный момент груз находился в положении Мо на расстоянии a=9 м от начала координат и имел скорость v0=30 м/с. Определить уравнение движения груза в заданной системе координат (рис. 3.2).

Рис. 3.2
Решение. 1. Пусть тело в произвольный момент времени t занимает положение М на наклонной плоскости. Освободим тело от связи (шероховатой наклонной плоскости), заменив ее действие нормальной составляющей реакции N и силой трения Fтр. Тогда тело будет двигаться под действием системы трех сил (Р, N, Fтр).

1. Примем тело за материальную точку. Проектируя основное уравнение динамики точки

на оси декартовых координат Оx и Оy (ось Оx совпадает с направлением движения точки), получим два дифференциальных уравнения:

Здесь m – масса точки; – проекции ускорения точки на соответствующие оси.

Так как тело движется прямолинейно вдоль оси Оx, то проекция ускорения на ось Оy равна нулю, следовательно, уравнение (3.2) примет вид .

Сила трения по закону Кулона равна . С учетом этого выражения дифференциальное уравнение (3.1) примет следующий вид:

.

После замены , где – ускорение свободного падения тела, и очевидных преобразований получим следующее дифференциальное уравнение второго порядка:

.

Для понижения порядка уравнения произведем замену , получим дифференциальное уравнение первого порядка с разделяющимися переменными:

.

Разделив переменные, проинтегрируем дифференциальное уравнение с учетом начальных условий (при t=0, vx=v0):

Произведем замену для понижения порядка уравнения и, разделив переменные, проинтегрируем дифференциальное уравнение второй раз с учетом начальных условий (при t=0 x=x0=a):

Подставив в соотношение (4.4) значения заданных величин, получим окончательно следующее уравнение движения груза:

Задача 3.2

Данная задача на определение скорости материальной точки решается с применением теоремы об изменении количества движения.

Телу массой m сообщена начальная скорость v0, направленная вверх по наклонной плоскости, составляющей угол α с горизонтом. На тело действует сила P, направленная в те же сторону (рис. 3.3).

Рис.3.3

Зная закон изменения силы Р=Р(t) и коэффициент трения скольжения f, определить скорость тела в момент времени t1 , t2, t3 и проверить полученный результат для момента времени t1 с помощью дифференциального уравнения движения.

Необходимые для решения данные приведены в таблице 3.2

Таблица 3.2.

Цифра шифра 1-я цифра шифра 2-я цифра шифра 3-я цифра шифра
m, кг v0, м/с t1, с t2, с t3, с P0, Н P1, Н P2, Н P3, Н α, град f
    5,4                 0,10
    3,0                 0,25
    4,0                 0,10
    4,5                 0,12
    9,0                 0,08
    4,0                 0,06
    8,0                 0,20
    7,6                 0,12
    5,0                 0,20
    12,0                 0,08
                                             

 

При построении графика изменения силы Р по заданным её значениям Р0, Р1, Р2, Р3 для момента времени t0, t1 , t2, t3, считать зависимость Р=Р(t) между указанными моментами времени линейной. Значение силы Р, задаваемое по табл. 3.2 в виде дроби, указывает на то, что модуль силы в заданный момент времени претерпевает «скачок»: в числителе указан модуль силы в конце промежутка времени, а в знаменателе – в начале следующего промежутка времени.




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 1252; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.