![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Непрерывность и точки разрыва функции
Замечательные пределы Нахождение пределов функции. Следующие теоремы обеспечивают нахождение пределов функций. Пусть пределы
1. 2 3.
Также используются следствия: 1. 2. Вычисление пределов следует начинать с подстановки вместо Для раскрытия неопределенности над функцией Рассмотрим примеры нахождения пределов функций.
1.
2.
3. 4.
5.
Представление о непрерывности функции интуитивно связано у нас с тем, что её графиком является плавная, нигде не прерывающаяся линия. Строгое определение непрерывности функции в точке следующее. Функция Например, все три условия для функции Функция Точки, в которых нарушается непрерывность функции, называются точками разрыва этой функции. Если существуют пределы
На концах промежутков эта функция имеет точки разрыва, причем они являются точками разрыва первого рода. Отметим некоторые свойства функций непрерывных на отрезке. Функция, непрерывная на отрезке, хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.Если функция непрерывна на отрезке, то она ограничена на этом отрезке. Пусть функция непрерывна на отрезке и на концах этого отрезка принимает значения разных знаков, тогда внутри отрезка найдется, по крайней мере, одна точка, в которой функция обращается в ноль.
Дата добавления: 2014-11-26; Просмотров: 896; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |