КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Характеристика вагонов 81-717(714) 21 страница
По многочисленности и разнообразию своих соединений углерод занимает среди других элементов совершенно особое положение. Число изученных соединений углерода оценивают в настоящее время примерно в два миллиона, тогда как соединения всех остальных элементов, вместе взятые, исчисляются лишь сотнями тысяч. Многообразие соединений углерода объясняется способностью его атомов связываться между собой с образованием длинных цепей или колец (см. § 162). 153. Аллотропия углерода. В свободном состоянии углерод из- Рис. Ш. Структура алмаза. Стрелки показывают связи между атомами в тетраэдрах. мы его, как древесный уголь, кокс, сажа, имеют неупорядоченную структуру. Синтетически получены карбин и полику-мулен — разновидности углерода, состоящие из линейных цепных полимеров типа ------ С = С—С = С------ или... = С = С = —С=---. Карбин обладает полупроводниковыми свойствами. При сильном нагревании без доступа воздуха он превращается в графит. Алмаз — бесцветное, прозрачное вещество, чрезвычайно сильно преломляющее лучи света. Он кристаллизуется в кубической гра-нецептрированной решетке. При этом одна половина атомов располагается в вершинах и центрах граней одного куба, а другая — в вершинах и центрах граней другого куба, смещенного относительно первого в направлении его пространственной диагонали. Атомы углерода в алмазе находятся в состоянии 5,о3-гибридизации и образуют трехмерную тетраэдрическую сетку, в которой они связаны друг с другом ковалеитными связями *. Расстояние между атомами в тетраэдрах равно 0,154 им. Структура алмаза показана на рис. 117. Из всех простых веществ алмаз имеет максимальное число атомов, приходящихся на единицу объема, — атомы углерода «упакованы» в алмазе очень плотно. С этим, а также с большой прочностью связи в углеродных тетраэдрах связано то, что по твердости алмаз превосходит все известные вещества. Поэтому его широко применяют в промышленности; почти 80 % добываемых алмазов используются для технических целей. Его используют для обработки различных твердых материалов, для бурения горных пород. Будучи весьма твердым, алмаз в то же время хрупок. Получающийся при измельчении алмаза порошок служит для шлифовки драгоценных камней и самих алмазов. Должным образом отшлифованные прозрачные алмазы называются бриллиантами.
Ввиду большой ценности алмазов было предпринято много попыток получить их искусственным путем из графита. Однако долгое время эти попытки кончались неудачей. Только в 1955 г., применив очень высокое давление (порядка 1010 Па) и длительный нагрев при температуре около 3000 °С, американским, а одновременно и шведским ученым удалось получить синтетические алмазы. В Советском Союзе также разработан метод получения синтетических алмазов, а в 1961 г. начато их промышленное производство. Кроме того, в 1969 г. в СССР синтезированы нитевидные кристаллы Рис. 118. Структура графита. алмаза, причем их получают при обычном давлении. Нитевидные кристаллы, или «усы», имеют структуру, практически лишенную дефектов, и обладают очень высокой прочностью. При прокаливании в кислороде алмаз сгорает, образуя диоксид углерода. Если сильно нагреть алмаз без доступа воздуха, то он превращается в графит. Графит представляет собой темно-серые кристаллы со слабым металлическим блеском. Он имеет слоистую решетку. Все атомы углерода находятся здесь в состоянии 5р2-гпбриди-зации: каждый из них образует три ковалентные о-связи с соседними атомами, причем углы между направлениями связей равны 120°. В результате возникает плоская сетка, составленная из правильных шестиугольников, в вершинах которых находятся ядра атомов углерода; расстояние между соседними ядрами составляет 0,1415 нм. В образовании о-связей участвуют три электрона каждого атома углерода. Четвертый электрон внешнего слоя занимает 2р-орби-таль, не участвующую в гибридизации. Такие негибридные электронные облака атомов углерода ориентированы перпендикулярно плоскости слоя и, перекрываясь друг с другом, образуют делокали-зованные я-связи*. Структура графита показана на рис. 118. Соседние слои атомов углерода в кристалле графита находятся на довольно большом расстоянии друг от друга (0,335 нм); это указывает иа малую прочность связи между атомами углерода, расположенными в разных слоях. Соседние слои связаны между собой в основном силами Ван-дер-Ваальса, но частично связь имеет металлический характер, т. е. обусловлена «обобществлением» электронов всеми атомами кристалла **. Этим объясняется сравнительно высокая электрическая проводимость и теплопроводность графита не только в направлении слоев, но и в перпендикулярном к ним направлении. Рассмотренная структура графита обусловливает сильную анизотропию его свойств. Так, теплопроводность графита в направлении плоскости слоев равна 4,0 Дж/(см-с• К.), а в перпендикулярном направлении составляет 0,79 Дж/(см-с-К). Электрическое сопротивление графита в направлении слоев в 104 раз меньше, чем в перпендикулярном направлении.
Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга. Этим объясняется малая механическая прочность графита. Если провести куском графита по бумаге, то мельчайшие кристаллики графита, имеющие вид чешуек, прилипают к бумаге, оставляя на ней серую черту. На этом основано применение графита для изготовления карандашей. На воздухе графит не загорается даже при сильном накаливании, но легко сгорает в чистом кислороде, превращаясь в диоксид углерода. Благодаря электрической проводимости графит применяется для изготовления электродов. Из смеси графита с глиной делают огнеупорные тигли для плавления металлов. Смешанный с маслом графит служит прекрасным смазочным средством, так как чешуйки его, заполняя неровности материала, создают гладкую поверхность, облегчающую скольжение. Графит применяют также в качестве замедлителя нейтронов в ядерных реакторах. Кроме природного, в промышленности находит применение искусственный графит. Его получают главным образом из лучших сортов каменного угля. Превращение происходит при температурах около 3000°С в электрических печах без доступа воздуха. На основе естественного и, особенно, искусственного графита изготовляют материалы, применяемые в химической промышленности. Благодаря их высокой химической стойкости они используются для футеровки, изготовления труб и др. Графит термодинамически устойчив в широком интервале температур и давлений, в частности при обычных условиях. В связи с этим при расчетах термодинамических величин в качестве стандартного состояния углерода принимается графит. Алмаз термодинамически устойчив лишь при высоких давлениях (выше 109 Па). Однако скорость превращения алмаза в графит становится заметной лишь при температурах выше 1000 °С; при 1750 °С превращение алмаза в графит происходит быстро. «Аморфный» углерод (уголь). При нагревании углеродсодер-жащих соединений без доступа воздуха из них выделяется черная масса, называемая «аморфным» углеродом или просто углем. Такой углерод состоит из мельчайших кристалликов с разупорядо-ченной структурой графита. Уголь растворяется во многих расплавленных металлах, например в железе, никеле, платине. Плотность угля колеблется от 1,8 до 2,1 г/см3. Угли существенно различаются по своим свойствам в зависимости от вещества, из которого они получены и способа получения. Кроме того, они всегда содержат примеси, сильно влияющие на их свойства. Важнейшие технические сорта угля: кокс, древесный уголь, костяной уголь и сажа. Кокс получается при сухой перегонке каменного угля. Применяется он главным образом в металлургии при выплавке металлов из руд. Рис. 119. Прибор для демонстрации поглощения аммиака углем.
Древесный уголь получается прн нагревании дерева без доступа воздуха. Прн этом улавливают ценные продукты сухой перегонки — метиловый спирт, уксусную кислоту и др. Древесный уголь применяется в металлургической промышленности, в кузнечном деле. Благодаря пористому строению, древесный уголь обладает высокой адсорбционной способностью. Чтобы наблюдать адсорбцию газов углем, произведем следующий опыт. Наполним аммиаком стеклянный цилиндр и опустим открытый конец его в чашку с ртутью (рис. 119). Затем, прокалив на горелке кусочек древесного угля, погрузим его в ртуть и подведем под отверстие цилиндра с аммиаком. Уголь всплывает на поверхность ртути в цилиндре, и ртуть сейчас же начинает подниматься вверх вследствие поглощения аммиака углем. Особенно хорошо поглощают газы активные угли (стр. 312). Они применяются для поглощения паров летучих жидкостей из воздуха и газовых смесей, в противогазах, а также в качестве катализатора в некоторых химических производствах. Уголь обладает способностью адсорбировать-не только газы, но и растворенные вещества. Это его свойство открыл в конце XVIII века русский академик Т. Е. Ловиц. Костяной уголь получается путем обугливания обезжиренных костей. Он содержит от 7 до 11 % углерода, около 80 % фосфата кальция и другие соли. Костяной уголь отличается очень большой поглотительной способностью, особенно по отношению к органическим красителям, и служит для удаления из растворов различных красящих веществ. Сажа представляет собой наиболее чистый «аморфный» углерод. В промышленности ее получают термическим разложением метана, а также сжиганием при недостаточном доступе воздуха смолы, скипидара и других богатых углеродом веществ. Сажа применяется в качестве черной краски (тушь, типографская краска), а также в производстве резины как ее составная часть. 154. Химические свойства углерода. Карбиды. При низких температурах и уголь, и графит и, в особенности, алмаз инертны. При нагревании их активность увеличивается: уголь легко соединяется с кислородом и служит хорошим восстановителем. Важнейший процесс металлургии — выплавка металлов из руд—-осуществляется путем восстановления оксидов металлов углем (или моноокси-дом углерода). С кислородом углерод образует диоксид (или двуокись) углерода С02, часто называемый также углекислым газом, и оксид углерода(II), или монооксид углерода, СО. При очень высоких температурах углерод соединяется с водородом, серой, кремнием, бором и многими металлами; уголь вступает в реакции легче, чем графит и тем более алмаз. Соединения углерода с металлами и другими элементами, которые по отношению к углероду являются электроположительными, называются карбидами. Их получают прокаливанием металлов или их оксидов с углем. Карбиды — кристаллические тела. Природа химической связи в них может быть различной. Так, многие карбиды металлов главных подгрупп I, II и III групп периодической системы представляют собой солеобразные соединения с преобладанием ионной связи. К их числу относятся карбиды алюминия АЦСз и кальция СаС2. Первый из них можно рассматривать как продукт замещения водорода па металл в метане СН4, а второй— в ацетилене С2Н2. Действительно, при взаимодействии карбида алюминия с водой образуется метай А14С3 + 12FLO = 4А1(ОН)з + ЗСИ4* а при взаимодействии с водой карбида кальция — ацетилен: СаС2 + 2П20 = Са(ОН)2 -J- C2H2f В карбидах кремния SiC (см. § 178) и бора В4С связь между атомами ковалентная. Эти вещества характеризуются высокой твердостью, тугоплавкостью, химической инертностью. Большинство металлоз побочных подгрупп IV—VIII групп периодической системы образуют карбиды, связь в которых близка к металлической (см. § 190), вследствие чего эти карбиды в некоторых отношениях сходны с металлами, например обладают значительной электрической проводимостью. Они характеризуются также высокой твердостью и тугоплавкостью; карбиды этой группы применяются в ряде отраслей промышленности. Большинство ценных свойств чугунов и сталей обусловлены присутствием в них карбида железа Fe3C (см. § 238). 155. Диоксид углерода. Угольная кислота. Диоксид углерода С02 постоянно образуется в природе при окислении органических веществ (гниение растительных и животных остатков, дыхание, сжигание топлива). В больших количествах он выделяется из вулканических трещин и из вод минеральных источников. В лабораториях диоксид углерода обычно получают, действуя на мрамор СаС03 соляной кислотой в аппарате Киппа; СаСОз + 2НС1 = СаС12 + Н20 + C02t В промышленности большие количества диоксида углерода получают при обжиге известняка: СаСОз = CaO С02| Диоксид углерода при обычных условиях — бесцветный газ, примерно в 1,5 раза тяжелее воздуха, благодаря чему его можно переливать, как жидкость, из одного сосуда в другой. Масса 1 л С02 при нормальных условиях составляет 1,98 г. Растворимость диоксида углерода в воде невелика: 1 объем воды при 20 °С растворяет 0,88 объема С02, а при 0 °С—-1,7 объема. Применяется диоксид углерода при получении соды по аммиачпо-хлоридному способу (см. стр. 426), для синтеза карбамида (стр. 427), для получения солей угольной кислоты, а также для газирования фруктовых и минеральных вод и других напитков. Под давлением около 0,6 МПа диоксид углерода при комнатной температуре превращается в жидкость. Жидкий диоксид углерода хранят в стальных баллонах. При быстром выливании его из баллона поглощается вследствие испарения так много теплоты, что С02 превращается в твердую белую снегообразную массу, которая, не плавясь, сублимируется при —78,5 °С. Твердый диоксид углерода под названием «сухой лед» применяется для охлаждения скоропортящихся продуктов, для производства и сохранения мороженого, а также во многих других случаях, когда требуется получение низкой температуры. Раствор С02 в воде имеет кисловатый вкус и обладает слабокислой реакцией, обусловленной присутствием в растворе небольших количеств угольной кислоты Н2С03, образующейся в результате обратимой реакции: C02 + H20 Н2С03 Таким образом, диоксид углерода является ангидридом угольной кислоты. Равновесие последней реакции сильно сдвинуто влево-, лишь очень небольшое количество растворенного С02 превращается в угольную кислоту. Угольная кислота Н2СОз может существовать только в водном растворе. При нагревании раствора диоксид углерода улетучивается, равновесие образования Н2СОз смещается влево, и в конце концов остается чистая вода. Угольная кислота очень слабая. В растворе она диссоциирует главным образом на ионы Н+ и НСОз" и лишь в ничтожном количестве образует ионы СОз-: Н2С03 H+ + HC02 ^=fc 2Н+ + С023- Константа диссоциации угольной кислоты по первой ступени, учитывающая равновесие ионов со всем количеством диоксида углерода в растворе (как в форме С02, так и в виде угольной кислоты), выражается соотношением: К = [н+][нсо;] =45,10-7, [С02 + Н2С03] ' Константа диссоциации по второй ступени; К, = М№- = 4,7- Ю-[НСОз] Как двухосновная кислота, угольная кислота образует два ряда солей — средние и кислые; средние соли называются карбонатами, кислые — гидрокарбонатами. Соли угольной кислоты могут быть получены или действием диоксида углерода на щелочи, или путем обменных реакций между растворимыми солями угольной кислоты и солями других кислот. Например: NaOH + С02 = КаНСОз NaHC03 + NaOH = Na2C03 + H20 ВаС12 + Na2C03 = BaC03j + 2NaCl Co слабыми основаниями угольная кислота в большинстве случаев дает только основные соли, примером которых может служить карбонат гидроксомеди (СиОН)2С03. Встречающийся в природе минерал такого состава называется малахитом. При действии кислот, даже таких слабых, как уксусная, все карбонаты разлагаются с выделением диоксида углерода. Этой реакцией часто пользуются для открытия карбонатов, так как выделение С02 легко обнаружить по характерному шипению. При нагревании все карбонаты, кроме солей щелочных металлов, разлагаются с выделением С02. Продуктами разложения в большинстве случаев являются оксиды соответствующих металлов, например; MgC03 = MgO + C02t СаСОз = СаО + C02f Гидрокарбонаты щелочных металлов при нагревании переходят в карбонаты; 2NaHC03 = Na2C03 + С02Т + H20 Большинство гидрокарбонатов, а также карбонаты калия, натрия, рубидия, цезия и аммония растворимы в воде; карбонаты других металлов в воде нерастворимы. Растворы карбонатов щелочных металлов вследствие гидролиза имеют сильнощелочную реакцию Na2C03 + Н20 NaHC03 + NaOH или COl' + Н20 з?=* НСО3 + ОН" Из солей угольной кислоты в природе чрезвычайно распространен карбонат кальция СаС03. Он встречается в виде известняка, мела, мрамора. Карбонат кальция нерастворим в воде. Поэтому известковая вода (раствор гидроксида кальция) при пропускании через нее диоксида углерода мутнеет: Са(ОН)2 + С02 = СаСОз-J, + Н20 Однако, если пропускать С02 через известковую воду долгое время, то мутная вначале жидкость постепенно светлеет и наконец становится совершенно прозрачной. Растворение происходит вследствие образования кислой соли — гидрокарбоната кальция: СаС03 + Н20 + С02 = Са(НС03)2 Гидрокарбонат кальция — вещество непрочное. При кипячении раствора или продолжительном его стоянии на воздухе гидрокарбонат разлагается с выделением С02 и образованием средней соли. Растворимостью гндрокарбонатов в воде объясняется постоянное передвижение карбонатов в природе. Почзенные и грунтовые воды, содержащие С02, просачиваясь сквозь почву и особенно сквозь пласты известняка, растворяют карбонат кальция и уносят его с собой в виде гидрокарбоната в ручьи, реки и моря. Оттуда он попадает в организмы морских животных и идет на построение их скелетов или, выделяя диоксид углерода, снова превращается в карбонат кальция и отлагается в виде пластов. Кроме карбоната кальция, в природе встречается в больших количествах карбонат магния MgC03, известный под названием магнезита. Карбонат магния, как и карбонат кальция, легко растворяется в воде, содержащей С02, переходя в растворимый гидро-карбоиат. Некоторые карбонаты являются ценными рудами и служат для получения металлов (например, шпатовый железняк FeC03, галмей ZnCOa). Карбонат натрия, или сода, Na2C03. В виде кристаллогидрата сода отвечает формуле Na2C03 • 10Н2О. Однако этот кристаллогидрат легко выветривается — теряет часть кристаллизационной воды. Сода — один из главных продуктов основной химической промышленности. Она в больших количествах потребляется стекольной, мыловаренной, целлюлозно-бумажной, текстильной, нефтяной и другими отраслями промышленности, а также служит для получения различных солей натрия. Применяется сода и в быту, главным образом как моющее средство. В настоящее время соду получают в промышленности а м м и -ачно-хлоридным способом, основанным на образовании гидрокарбоната натрия при реакции между хлоридом натрия и гидрокарбонатом аммония в водном растворе. Концентрированный раствор хлорида натрия насыщают аммиаком, а затем пропускают в него под давлением диоксид углерода, получаемый обжигом известняка. При взаимодействии аммиака, диоксида углерода и воды образуется гидрокарбонат аммония Ш3 + С02 + Н20 = NH4HC03 который, вступая в обменную реакцию с хлоридом натрия, образует хлорид аммония и гидрокарбонат натрия: NH4HCO3 + NaCl = NaHC03! + NH4C1 Гидрокарбонат натрия сравнительно мало растворим в холодной воде и выделяется в виде осадка, который отфильтровывают. При прокаливании гидрокарбонат натрия разлагается иа карбонат, воду и диоксид углерода, вновь поступающий в производство: 2NaHC03 = Na2C03 + C02f + Н20 Нагревая раствор, содержащий хлорид аммония, с гашеной известью, выделяют аммиак 2КН4С1 + Са(ОН)2 = 2NH3f + СаС12 + 2Н20 который также возвращается в производство. Таким образом, единственным отходом производства является хлорид кальция, остающийся в растворе после выделения аммиака и имеющий ограниченное применение. Полученный по аммпачио-хлоридному способу карбонат натрия не содержит кристаллизационой воды и называется кальцинированной содой. Часть гидрокарбоната натрия используется без дальнейшей переработки. Например, под названием питьевой, или двууглекислой, соды он применяется в медицине, в хлебопечении, в пищевой промышленности. Производство кальцинированной соды в СССР непрерывно растет. В 1957 г. оно составило 1,6 млн. т, примерно втрое превысив объем производства 1940 г., а в 1985 г. достигло 5,03 млн. т. Карбонат калия, или поташ, К2СО3 представляет собой белый порошок, расплывающийся во влажном воздухе и хорошо растворимый в воде. Применяется он для получения мыла, при изготовлении тугоплавкого стекла, в фотографии. Поташ получают действием диоксида углерода на раствор гидроксида калия, образующийся при электролизе раствора хлорида калия: 2КОН + С02 = к2со3 + н2о Важное в практическом отношении соединение — карбамид, или мочевина, CO(NH2)2 получается взаимодействием диоксида углерода с аммиаком под давлением: С02 + 2NH3 = CO(NH2)2 + Н20 Этот способ получения карбамида был открыт в 1870 г, А. И. Базаровым. Карбамид представляет собой белые кристаллы, хорошо растворимые в воде. Он используется в сельском хозяйстве в качестве высококонцентрированного азотного удобрения и как добавка к корму жвачных животных. На основе карбамида получают дешевые пластические массы, так называемые карбамидные пластики. Он служит также исходным материалом для получения многих органических веществ и лекарственных препаратов. Некоторые производные карбамида обладают гербицидными свойствами — они применяются для борьбы с сорняками. 15*3. Оксид углерода(П). Оксид углерода(П), или. монооксид углерода, СО — бесцветный ядовитый газ, конденсирующийся в жидкость только при —192 °С и затвердевающий при —205 °С. В воде оксид углерода растворим очень мало и не вступает с ней з химическое взаимодействие. Электронное строение молекулы СО рассмотрено на стр. 143. Как показано на рис. 53, шесть валентных электронов атомов углерода и кислорода размещаются на трех связывающих МО, образуя тройную связь; эта связь характеризуется высокой прочностью (1076 кДж/моль).
Образование тройной связи в молекуле СО можно объяснить и методом ВС. За счет двух неспареиных электронов, ствующих атомов t f
возникают две ковалентные связи: t \
о Как показывает эта схема, идяа из орбиталей внешнего электронного слоя атома углерода остается незанятой электронами, так что этот атом может быть акцептором электронной пары. Атом же кислорода сохраняет на одной из у9-орбиталей неподеленную электронную пару и обладает, следовательно, электроно-донорными свойствами. В результате образуется еще одна кова-леитная связь — донорно-акцепторная:
\ \\\ В образовавшейся таким образом молекуле каждый из атомов имеет во внешнем слое восемь электронов. Структуру молекулы СО можно изобразить схемой: С£0 Здесь стрелкой показана связь, образованная по донорпо-акцепторному способу. Реакция образования оксида углерода(II) из простых веществ описывается уравнением: С + i/202 = cot Стандартная энергия Гиббса этой реакции равна ■—137 кДж/моль, однако стандартная энергия Гиббса реакции С + о2 = co2t гораздо более отрицательна (—394 кДж/моль). Поэтому при невысоких температурах уголь сгорает до С02, а оксид углерода, даже при недостатке кислорода, почти не образуется. Иначе об* стоит дело при повышении температуры. По достижении 400—* 500 °С начинает протекать реакция между углем и образовавшимся диоксидом углерода: С + С02 = 2C0t Эта реакция эндотермична и при 298 К изменение стандартной энергии Гиббса при ее протекании положительно (+120 кДж/моль). Однако в ходе превращения происходит двукратное увеличение числа молекул газа и энтропия системы сильно возрастает, так что энтропийное слагаемое энергии Гиббса имеет отрицательный знак. С увеличением температуры это слагаемое начинает преобладать (по абсолютной величине) над энтальпийным членом, в результате чего изменении энергии Гиббса при протекании реакции становится отрицательным. Уже при 800 °С степень превращения С02 в СО достигает 80%. Рассмотренная реакция между углеродом и С02, приводящая к образованию монооксида углерода, осуществляется в очень больших масштабах в доменном процессе (см. § 239), а также в газогенераторах (см. § 159). В лабораториях оксид углерода(II) обычно получают, прибавляя муравьиную кислоту НСООН к нагретой серной кислоте. Последняя отнимает от муравьиной кислоты воду, выделяя оксид углерода (II): НСООН = cot + Н20 Эта реакция показывает, что оксид углерода (II) можно рас^ сматривать как ангидрид муравьиной кислоты. Хотя муравьиная кислота не может быть получена непосредственно из оксида угле* рода (II) и воды, соли ее образуются при взаимодействии едки^ щелочей с оксидом углерода при 150—200 °С; NaOH + СО = HCOONa На воздухе оксид углерода горит голубоватым пламенем с вы> делением большого количества теплоты, превращаясь в С02: 2СО + Оа = 2СОа + 566 кДж На солнечном свету или в присутствии активного угля (катализатор) оксид углерода непосредственно соединяется с хлором, образуя чрезвычайно ядовитый газ — фосген: СО + С12= СОСЬ
Фосген — важный промышленный продукт. Он применяется при производстве ряда органических и неорганических веществ, например красителей. Оксид углерода(II) соединяется со многими металлами, образуя карбон ил ы металлов, например карбонил железа Fe(CO)5, карбонил никеля №(СО)4. Последние два вещества представляют собой летучие, весьма ядовитые жидкости. Большинство карбонилов металлов—кристаллические вещества. Наибольшее практическое значение имеют карбонилы никеля, кобальта и железа. Они применяются для получения высокочистых металлов (см. § 193), для нанесения металлических покрытий. Кроме того, они служат катализаторами многих важных химических реакций. Химические связи в молекулах карбонилов металлов образованы по до-корно-ахцепториому способу за счет неспаренных электронных пар молекулы СО и свободных орбпталей возбужденного атома металла. Например, у возбужденного атома железа имеются пять незанятых валентных орбиталей: Те* При повышенной температуре оксид углерода(II) — хороший восстановитель, играющий важную роль в металлургии при восстановлении металлов из их оксидов (см. §§ 192 и 239). Он используется также в качестве газообразного топлива (см. § 159) и входит в число исходных веществ в производстве ряда органических соединений.
Дата добавления: 2014-11-16; Просмотров: 427; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |