Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

И построению ее графика




Приложение производной к исследованию функции

Вопросы для самопроверки

 

1. Что называется производной функции?

2. Каковы правила нахождения производных от суммы, произведения, дроби, от постоянной величины?

3. Как найти производную сложной функции?

4. Правило дифференцирования функции, заданной неявно.

5. В чем заключается метод логарифмического дифференцирования?

Методы дифференциального исчисления позволяют исследовать функции и строить их графики. Так, по знаку первой производной в интервале можно определить возрастание (убывание) функции, делать выводы о наличии или отсутствии экстремума функции. По знаку второй производной выделяем интервалы выпуклости (вогнутости) графика функции и точки перегиба ее графика.

Справедливы следующие теоремы:

1. Если функция дифференцируема на интервале и для , то эта функция возрастает (убывает) на интервале .

2. Если дифференцируемая функция = имеет экстремум в точке х , то ее производная в этой точке равна нулю: .

3. Если непрерывная функция = дифференцируема в некоторой -окрестности критической точки х и при переходе через нее (слева направо) производная меняет знак с плюса на минус, то х - точка максимума; с минуса на плюс, то х - точка минимума.

4. Если функция = во всех точках интервала имеет отрицательную вторую производную, то график функции в этом интервале выпуклый верх; если , то график выпуклый вниз.

5. Если вторая производная при переходе через точку х , в которой она равна нулю или не существует, меняет знак, то точка графика с абсциссой х - точка перегиба.

Построение графика функции значительно облегчается, если известны его асимптоты.

Различают 2 вида асимптот:

а) Вертикальные, существующие в точках разрыва второго рода. Их уравнения имеют вид .

б) Наклонные: , где

, .

В частности, при наклонная асимптота становится горизонтальной и имеет уравнение .

При исследовании функции и построении ее графика полезно воспользоваться следующей схемой:

1. Найти область определения функции.

2. Найти точки пересечения графика с осями координат, если это возможно.

3. Найти асимптоты графика функции.

4. Найти интервалы монотонности и точки экстремума функции.

5. Найти интервалы выпуклости и вогнутости и точки перегиба графика функции.

На основании полученного исследования построить график.

Пример 7 Исследовать функцию и построить ее график:

.

Решение.

1. Область определения.

.

2. Асимптоты графика:

а) вертикальная

б) наклонная , где

.

3. Найдем производную функции.

; ; .

.

Определим знак производной в промежутках:

 

() -2 -2, 4   (4, 10)   (10, + )
+   - не сущ.   +
max   min

4. Найдем вторую производную функции.

()   (4, + )
- не сущ. +
 

Точек перегиба графика функции нет.

По результатам исследования построим график функции.

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 435; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.