Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

L. Случайные величины




i. Случайная величина Х равна числу появлений «герба» в серии из n+3 бросаний монеты. Найти закон распределения и функцию распределения F(x) этой случайной величины; вычислить ее математическое ожидание M X и дисперсию D X; построить график F(x).

ii. Закон распределения дискретной случайной величины X имеет вид:

 

xi -2 -1   m m+n
pi 0,2 0,1 0,2 p4 p5

 

Найти вероятности p4, p5, и дисперсию D X, если математическое ожидание M X =-0,5+0,5m+0,1n.

iii. Плотность распределения непрерывной случайной величины X имеет вид:

Найти:

а) параметр а; б) функцию распределения ;

в) вероятность попадания случайной величины X в интервал

;

г) математическое ожидание M X и дисперсию D X.

Построить график функций и .

iv. Случайные величины имеют равномерное, пуассоновское и показательное распределения соответственно. Известно, что математические ожидания i=m+n, а дисперсия 1=n2/3. Найти вероятности: а) ; б) ; в) .

13. Элементы математической статистики

Имеются следующие выборочные данные (выборка 10%-ная, механическая) о выпуске продукции и сумме прибыли, млн. руб.:

 

№ предприятия Выпуск продукции Прибыль № предприятия Выпуск продукции Прибыль  
  60+n 15,7   52,0 14,6
  78,0 18,0   62,0 14,8
  41,0 12,1   69,0 16,1
  54,0 13,8   85,0 16,7
  60+n 15,5   70+n 15,8
  n•m+20 n+m+10   71,0 16,4
  45,0 12,8   n•m+30 n+m+20
  57,0 14,2   72,0 16,5
  67,0 15,9   88,0 18,5
  80+n 17,6   70+n 16,4
  92,0 18,2   74,0 16,0
  48,0 n+m+5   96,0 19,1
  59,0 16,5   75,0 16,3
  68,0 16,2   101,0 19,6
  80+n 16,7   70+n 17,2

По исходным данным:

Задание 13.1.

13.1.1. Постройте статистический ряд распределения предприятий по сумме прибыли, образовав пять групп с равными интервалами. Постройте графики ряда распределения.

13.1.2. Рассчитайте числовые характеристики ряда распределения предприятий по сумме прибыли: среднюю арифметическую , среднее квадратическое отклонение , дисперсию, коэффициент вариации V. Сделайте выводы.

Задание 13.2.

13.2.1. Определите границы, в которых с вероятностью 0,997 заключена сумма прибыли одного предприятия в генеральной совокупности.

13.2.2. Используя c2-критерий Пирсона, при уровне значимости проверить гипотезу о том, что случайная величина X – сумма прибыли – распределена по нормальному закону.

Задание 13.3.

13.3.1. Установите наличие и характер корреляционной связи между стоимостью произведённой продукции (X) и суммой прибыли на одно предприятие (Y). Постройте диаграмму рассеяния и линию регрессии.

13.3.2. Определите коэффициенты выборочного уравнения регрессии .

13.3.3. Рассчитайте линейный коэффициент корреляции. Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции. Сделайте вывод о тесноте связи между факторами X и Y, используя шкалу Чеддока.

При расчетах целесообразно использовать стандартные математические пакеты для персональных компьютеров.

14. Линейное программирование

m. Задача оптимального производства продукции.

Предприятие планирует выпуск двух видов продукции I и II, на производство которых расходуется три вида сырья А, В, и С. Потребность на каждую единицу -го вида продукции -го вида сырья, запас соответствующего вида сырья и прибыль от реализации единицы -го вида продукции заданы таблицей:

 

Виды сырья Виды продукции Запасы сырья
I II
А
В
С
прибыль  
план (ед.)  

 

i. Для производства двух видов продукции I и II с планом и единиц составить целевую функцию прибыли Z и соответствующую систему ограничений по запасам сырья, предполагая, что требуется изготовить в сумме не менее единиц обоих видов продукции.

ii. В условиях задачи 14.1.1. составить оптимальный план производства продукции, обеспечивающий максимальную прибыль . Определить остатки каждого вида сырья. (Задачу решить симплекс – методом)

iii. Построить по полученной системе ограничений многоугольник допустимых решений и найти оптимальный план производства геометрическим путем. Определить соответствующую прибыль .

n. Транспортная задача.

На трех складах , и хранится , и единиц одного и того же груза. Этот груз требуется доставить трем потребителям , и , заказы которых составляют , и единиц груза соответственно. Стоимость перевозок единицы груза с -го склада -му потребителю указаны в правых верхних углах соответствующих клеток транспортной таблицы:

 

потребности запасы
4 2    
5     3
1     6

 

i. Сравнивая суммарный запас и суммарную потребность в грузе, установить, является ли модель транспортной задачи, заданная этой таблицей, открытой или закрытой. Если модель является открытой, то ее необходимо закрыть, добавив фиктивный склад с запасом в случае или фиктивного потребителя с потребностью в случае и положив соответствующие им тарифы перевозок нулевыми.

ii. Составить первоначальный план перевозок. (Рекомендуется воспользоваться методом наименьшей стоимости.)

iii. Проверить, является ли первоначальный план оптимальным в смысле суммарной стоимости перевозок, и если это так, то составить оптимальный план

,

обеспечивающий минимальную стоимость перевозок . Найти эту стоимость. (Рекомендуется воспользоваться методом потенциалов.)




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 807; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.