КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
L. Случайные величины
i. Случайная величина Х равна числу появлений «герба» в серии из n+3 бросаний монеты. Найти закон распределения и функцию распределения F(x) этой случайной величины; вычислить ее математическое ожидание M X и дисперсию D X; построить график F(x). ii. Закон распределения дискретной случайной величины X имеет вид:
Найти вероятности p4, p5, и дисперсию D X, если математическое ожидание M X =-0,5+0,5m+0,1n. iii. Плотность распределения непрерывной случайной величины X имеет вид: Найти: а) параметр а; б) функцию распределения ; в) вероятность попадания случайной величины X в интервал ; г) математическое ожидание M X и дисперсию D X. Построить график функций и . iv. Случайные величины имеют равномерное, пуассоновское и показательное распределения соответственно. Известно, что математические ожидания Mξi=m+n, а дисперсия Dξ1=n2/3. Найти вероятности: а) ; б) ; в) . 13. Элементы математической статистики Имеются следующие выборочные данные (выборка 10%-ная, механическая) о выпуске продукции и сумме прибыли, млн. руб.:
По исходным данным: Задание 13.1. 13.1.1. Постройте статистический ряд распределения предприятий по сумме прибыли, образовав пять групп с равными интервалами. Постройте графики ряда распределения. 13.1.2. Рассчитайте числовые характеристики ряда распределения предприятий по сумме прибыли: среднюю арифметическую , среднее квадратическое отклонение , дисперсию, коэффициент вариации V. Сделайте выводы. Задание 13.2. 13.2.1. Определите границы, в которых с вероятностью 0,997 заключена сумма прибыли одного предприятия в генеральной совокупности. 13.2.2. Используя c2-критерий Пирсона, при уровне значимости проверить гипотезу о том, что случайная величина X – сумма прибыли – распределена по нормальному закону. Задание 13.3. 13.3.1. Установите наличие и характер корреляционной связи между стоимостью произведённой продукции (X) и суммой прибыли на одно предприятие (Y). Постройте диаграмму рассеяния и линию регрессии. 13.3.2. Определите коэффициенты выборочного уравнения регрессии . 13.3.3. Рассчитайте линейный коэффициент корреляции. Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции. Сделайте вывод о тесноте связи между факторами X и Y, используя шкалу Чеддока. При расчетах целесообразно использовать стандартные математические пакеты для персональных компьютеров. 14. Линейное программирование m. Задача оптимального производства продукции. Предприятие планирует выпуск двух видов продукции I и II, на производство которых расходуется три вида сырья А, В, и С. Потребность на каждую единицу -го вида продукции -го вида сырья, запас соответствующего вида сырья и прибыль от реализации единицы -го вида продукции заданы таблицей:
i. Для производства двух видов продукции I и II с планом и единиц составить целевую функцию прибыли Z и соответствующую систему ограничений по запасам сырья, предполагая, что требуется изготовить в сумме не менее единиц обоих видов продукции. ii. В условиях задачи 14.1.1. составить оптимальный план производства продукции, обеспечивающий максимальную прибыль . Определить остатки каждого вида сырья. (Задачу решить симплекс – методом) iii. Построить по полученной системе ограничений многоугольник допустимых решений и найти оптимальный план производства геометрическим путем. Определить соответствующую прибыль . n. Транспортная задача. На трех складах , и хранится , и единиц одного и того же груза. Этот груз требуется доставить трем потребителям , и , заказы которых составляют , и единиц груза соответственно. Стоимость перевозок единицы груза с -го склада -му потребителю указаны в правых верхних углах соответствующих клеток транспортной таблицы:
i. Сравнивая суммарный запас и суммарную потребность в грузе, установить, является ли модель транспортной задачи, заданная этой таблицей, открытой или закрытой. Если модель является открытой, то ее необходимо закрыть, добавив фиктивный склад с запасом в случае или фиктивного потребителя с потребностью в случае и положив соответствующие им тарифы перевозок нулевыми. ii. Составить первоначальный план перевозок. (Рекомендуется воспользоваться методом наименьшей стоимости.) iii. Проверить, является ли первоначальный план оптимальным в смысле суммарной стоимости перевозок, и если это так, то составить оптимальный план , обеспечивающий минимальную стоимость перевозок . Найти эту стоимость. (Рекомендуется воспользоваться методом потенциалов.)
Дата добавления: 2014-11-20; Просмотров: 807; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |