Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Перевод с использованием формулы разложения по степени основания




Перевод из одной системы счисления в другую.

Взаимосвязь систем счисления используемых в вычислительной технике.

 

Двоичная система счисления, используемая элементами вычислительной техники имеет один недостаток – это громоздкость записи. Для того, чтобы записать число 255(10) требуется целых восемь разрядов 11111111(2). Для уменьшения разрядности при записи информации требовалось разработать системы счисления, в которые было бы легко переводить информацию из двоичной системы счисления, и при этом запись была бы менее громоздкой. Сначала была разработана восьмеричная система счисления, в которой тоже самое число 255(10) представлялось в виде 377(8), а затем шестнадцатеричная, это же число в которой имеет вид FF(16). Перевод между этими системами счисления можно осуществлять при помощи таблицы 2.

 

Таблица 2.

Двоичная Восьмеричная Шестнадцатеричная
     
     
     
     
     
     
     
     
     
     
    A
    B
    C
    D
    E
    F

 

Существует три способа перевода чисел из одной системы счисления в другую, это:

1. Перевод с использованием формулы разложения по степени основания;

2. Перевод целых чисел делением на основание;

3. Поразрядные способы перевода (переводы с использованием таблиц).

 

 

В основе способа перевода лежит использование веса разрядов чисел. Перевод с использованием формулы разложения по степеням основания удобен для перевода в десятичную систему счисления, так как в процессе преобразования действия выполняются в новой системе счисления.

Алгоритм перевода из одной системы счисления в другую представлен на рисунке 7.

Рассмотрим процесс перевода с использованием формулы разложения по степени основания на примерах:




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 652; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.