Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Третье началоКТД известно как теорема Нернста [77,78], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 8 страница




Чтобы убедиться в этом проведем оценку величины параметра α = f(p,T), присутствующего в указанных ра­венствах для подобных веществ. Из равенства (6) нахо­дим: ???

α = w2/γRT = w2µ/γ∙ 8314 Т.

Используя данные работы [ 78 ], расчетом по этой фор­муле находим:

• для стали: (Т = 293 Ко; γ = 1; µ = 56 кг/моль; w = 5130 м/с), α = 605;

• для воды: (Т= 293 K°, γ = 1; µ = 18 кг/моль; w= 1505 м/с), α = 16,74;

• для газообразного водорода: (Т = 293 К°; γ = 1,4; µ = 2 кг/ моль; w = 1505 м/с), α = 1;

• для водяного пара в критической точке: (Т = 647,3 К°; γ = 1; µ =18 кг/моль; w = 260 м/с), α = 0,224.

Эти примеры обнаруживают значительные расхож­дения в величинах параметра α = f (p,T) в зависимости от фазового состояния рассмотренных веществ. Они, в частности, свидетельствуют о сжимаемости твердых и жидких тел. С другой стороны, они показывают, что равенства (4.5), (4.6), содержащие этот параметр, при­годны для расчетов квадрата скорости звука в любых веществах. Следовательно, такой же универсальностью обладает равенство (4.3), а также и уравнение (4.36). Присутствие в уравнении (4.36) удельной энтропии, как наиболее общего параметра состояния ТДС, позволяет считать это уравнение универсальным уравнением со­стояния ТДС, находящейся в твердом, жидком, паро- или газообразном состояниях. В связи с этим уравне­ние (4.36) приобретает значение тождества термоди­намики.

 

4.3. Система законов

новой термодинамики

 

Располагая тождеством термодинамики, можно уточ­нить математические выражения и физический смысл основных законов новой термодинамики. Дифференци­руя все части тождества (4.36), получаем:

= pdv + vdp = Tds + sdT = Ndt + tdN.

Отсюда находим:

Tds – pdv = – sdT + vdp = TdsNdt = – sdT + tdN. (4.37)

Учитывая равенства (4.1), (4.10) и (4.11), выражение (4.37) можно представить в виде

du = dg = Тdspdv = –sdT + vdp = Tds – Ndt = –sdT + tdN =

= δq – δl = –δqTp + δlTp = 0 (4.38)

где δqTp и δlTp, – удельные теплота трения и работа тре­ния микрочастиц в веществе термодинамической систе­мы.

Равенство нулю выражения (4.38) следует из сущест­вования принципа эквивалентности теплоты и работы, одинаково справедливого для процессов внешнего и внутреннего энергообменов. Оно вытекает также из ра­венств (4.27)÷(4.34). Соотношение (4.38) представляет собой развернутое математическое выражение первого закона новой термодинамики.

Физическая сущность этого закона заключается в том, что при любых взаимодействиях ТДС с окружаю­щей средой внешний и внутренний энергообмены, про­исходящие в термодинамической системе, взаимно скомпенсированы.

Из первого закона новой термодинамики следуют три самостоятельных группы равенств:

du =dg=0 (4.39)

δq = δl =Tds = pdv = Ndt, (4.40)

δgTp = δlTp =sdT = vdp = tdN. (4.41)

Выражение (4.39) указывает на то, что при любых взаимодействиях термодинамической системы с окру­жающей средой удельные внутренняя энергия и свобод­ная энтальпия ТДС остаются постоянными.

В связи с тем, что du = dg = 0, то с учетом равенств (4.40) и (4.41), приобретают расширенные математиче­ские формулировки и выражения полных дифференциа­лов (4.12), (4.13) для:

удельной энтальпии

di = Tds + vdp = Tds + sdT = Tds + Ndt = pdv + sdT = pdv + vdp = Ndt + vdp = Ndt + sdT = δq +δlTp = δq + δqTp = δl + δgTр; (4.42)

удельной свободной энергии

df = –sdT – pdv = –sdT – Tds = –sdT – tdN = – vdp – pdv = –tdN – pdv = –tdN – Tds = –δqTp – δl = –δqTp – δg = –δlTp – δl. (4.43)

Таким образом, в новой термодинамике di = –df. Со­отношение (4.6) принимает вид:

ns = w2 = γpv = γTαR = γTs = (dp/dρ)s. (4.44)

При этом остаются в силе уравнения (4.7) и (4.8), оп­ределяющие особенности протекания волновых адиа­батных процессов в термодинамической системе, а так­же соотношения для определения удельных теплоемкостей (4.18)-(4.20).

Использование тождества термодинамики (4.36) фак­тически означает, что модель идеального газа и уравне­ние состояния идеального газа в форме Клапейрона мо­гут применяться в ней лишь в качестве исключения при оценочных расчетах только газообразных ТДС в достаточно узком диапазоне температур и давлений. Во всех остальных случаях (то есть для твердых, жидких, паро- или газообразных веществ, взаимодействующих с окружающей средой при любых значениях температуры давления), должно использоваться универсальное уравнение состояния ТДС.

В новой термодинамике могут широко использоваться зависимости статистической теории типа (4.22), так как они не противоречат физической сущности параметров состояния ТДС как вероятностных величин. Проанализируем полученные результаты подробнее, Выражение (4.40) содержит в качестве следствия математическую формулу второго закона классической тер­модинамики (4.2).

Поэтому можно сказать, что выражение (4.40) пред­ставляет собой расширенную математическую формулировку второго закона новой термодинамики для про­цессов внешнего энергообмена с окружающей средой. Выражение (4.41) получено впервые.

Оно указывает на то, что при любых взаимодействи­ях ТДС с окружающей средой, внутри вещества термо­динамической системы одновременно с процессами внешнего энергообмена происходят процессы внут­реннего энергообмена, связанные с работой трения микрочастиц и выделением либо поглощением теп­ лоты трения.

Поэтому следует считать, что выражение (4.41) пред­ставляет собой расширенную математическую форму­лировку второго закона новой термодинамики для процессов внутреннего энергообмена в термодинами­ческой системе (то есть процессов трения). Из равенств (4.40) и (4.41) следует, что характерный для классиче­ской термодинамики принцип возрастания энтропии в новой термодинамике исчезает, что свидетельству­ет об ошибочности этого принципа как всеобщего закона Природы.

Если подставить в тождество термодинамики (4.26) вместо любого сомножителя или члена 0 или ∞, то тож­дество теряет смысл, то есть перестает существовать. Следовательно, известный в классической термодина­мике принцип недостижимости нуля абсолютной тем­пературы является лишь частным проявлением принци­па неуничтожимости материи и в качестве третьего закона новой термодинамики должен быть распро­странен не только на абсолютную температуру, но и на любые другие параметры состояния термодинами­ческой системы, устанавливая для них границы сущест­вования между 0 и ∞, то есть 0 < аi < ∞, где αiобо­значение i-го параметра состояния.

Наконец, в качестве четвертого закона новой термо­динамики могут быть использованы уравнения Мак­свелла (4.14)-(4.17), а также подобные им уравнения, со­держащие параметры N и, которые могут быть легко получены из полных дифференциалов соответствующих характеристических функций (4.38), (4.42), (4.43) по правилу равенства накрест взятых производных:

(dT/dt)s = – (dN/ds)c; (ds/dN)T =(dt/dT)N;

(dt/ds)N = (dt/dN)s; (dN/dT)t = (ds/dt)T. (4.44) (4,45)

Уравнения (4. 44) играют в новой термодинамике роль, вполне аналогичную роли уравнений Максвелла (4.14)-(4.17). Дополнительные исследования показывают, что перечисленные четыре начала новой термодинамики позволяют решить любую теоретическую или практи­ческую задачу термодинамического характера.

В отличие от классической термодинамики в новой термодинамике предельно широко используется прин­цип обобщенной записи любых еесоотношений, что связано с существованием принципа аналогии (подо­бия) различных природных взаимодействий тепловых, электромагнитных, химических, гравитационных). Это означает, что любое из соотношений новой термодина­мики может быть распространено на любое из указан­ных взаимодействий. Как и в классической термодина­мике, это достигается путем простой замены обоз­начений в этих соотношениях р = у, v = х.

Следует, однако, учитывать, что при совместных энер­гетических воздействиях на термодинамическую систе­му со стороны окружающей среды результирующее воздействие является суммой всех одиночных. При этом абсолютная температура, которая не является аддитивным параметром состояния ТДС, служит общим тепловым потенциалом при описании внешнего и внутреннего энергообменов в ТДС при комплексных ее взаимодействиях с окружающей средой.

Однако указанные законы новой термодинамики не в состоянии описать химические взаимодействия, про­исходящие в сложных термодинамических системах. В химической термодинамике принято описывать химиче­ские взаимодействия с помощью системы так называе­мых характеристических функций, содержащих хи­мический потенциал µi, сопряженный с членом, учитывающим молярный состав химически реагирую­щих веществ ni. При этом химический потенциал, выраженный через полные дифференциалы характеристиче­ских функций химической термодинамики, имеет вид [ 79]:

µi = dψ/dni, (4. 45) (4.46)

где ψ – общее обозначение для всех характеристиче­ских функций. Полные дифференциалы характеристиче­ских функций действующей химической термодинамики имеют вид [ 78,79 ]:

для полной внутренней энергии:

dU = TdS – pdV + Σµidni, (4.46) (4.47)

для полной свободной энтальпии:

dG = –SdT + Vdp + Σµidni, (4.47) (4.48)

для полной энтальпии:

dJ = TdS + Vdp + Σµidni, (4.48) (4.49)

для полной свободной энергии:

dF = –SdTpdV + Σµidni. (4.49) (4.50)

Нетрудно видеть, что характеристические функции химической термодинамики выражаются в полных па­раметрах иотличаются от удельных характеристиче­ских функций новой термодинамики (4.30), (4.42) и (4.43), кроме того, наличием в них члена Σµidni. При этом вследствие того, что du = dg = 0, di =df, равен­ства (4.46)-(4.48) приобретают вид:

dU = dG = 0, (4.50) (4.51)

dJ = –dF. (4.51) (4.52)

Поэтому, универсальное уравнение состояния ТДС, учитывающее возможность химических превраще­ний в ней, в полных параметрах должно иметь вид сле­дующего тождества новой химической термодина­ микки:

П = рV + Σµini = TS + Σµini = Nt + Σµini, (4.52) (4.53)

где П – потенциальная энергия ТДС; р – давление; V – объем; Σµini – член, учитывающий химическую энергию реагирующих веществ; Т – абсолютная темпе­ратура: S – энтропия; N – мощность; t – время.

Для того чтобы не получить расхождений с надежно зарекомендовавшими себя па практике выражениями (4.49)-(4.52), приходится принять, что в равенстве (4.52)

Σµini = const. (4.53) (4.54)

(Действительно, в существующей химической термо­динамике показано, что член, учитывающий химиче­скую энергию, может быть представлен как [ 79]:

GTpn = Σµini. (4.54) (4.55)

Согласно же (4.50), dG = 0. Поэтому Σµini = const. Дифференцируя обе части (4.53), получаем

Σµidni = – Σnii. (4.55) (4.56)

Следствием равенства (4.50) является широко извест­ное в химической термодинамике уравнение Гиббса-Дюгема [ 78,79 ]:

SdT + Vdp – Σnii = 0, (4.56)

которое с учетом (4.55) теперь может быть представлено и в новых формах записи:

SdT + Vdp + Σµidni = 0, (4.57) (4.58)

TdS – pdV – Σnii = 0, (4.58 ) (4.59)
TdS – pdV + Σµini = 0. (4.59) (4.60)

С учетом (4.55) приобретают иной вид и полные диф­ференциалы характеристических функций новой хими­ческой термодинамики (что значительно расширяет об­ласть практического использования этих функций). Полученные таким образом уравнения новой химиче­ской термодинамики позволяют описать химические взаимодействия, происходящие в сложных термодина­мических системах.

Создатели классической (а вслед за ними и химиче­ской) термодинамики не располагали уравнением со­стояния реального газа в форме Камерлинга-Оннеса, по­лученным им лишь в 1901 году. Поэтому математически сформулированные ими первое и второе начала КТД оказались неполными. Та же участь постигла, поэтому, и химическую термодинамику.

Итак, анализ показал, что все основные законы новой термодинамики (нехимической и химической), а, следо­вательно, и любые другие ее соотношения, вытекают из соответствующих тождеств термодинамики (4.49), (4.52). (Фактически же, все основные законы новой тер­модинамики берут свое начало из единственного тожде­ства (4.52), которое является более общим, чем тожде­ство (4.36). Это делает новую термодинамику внут­ренне согласованной во всех деталях теорией. Кроме того, при построении полной теории какого-либо взаи­модействия это позволяет представить термодинамиче­скую часть такой теории в виде единственного уравне­ния, содержащего соответствующее тождество термо­динамики в интегральном или дифференциальном виде.

Важно, однако, иметь в виду то, что тождества термо­динамики и их следствия описывают только потенци­альную энергию ТДС и ее составляющие. Поэтому но­вая термодинамика не в состоянии рассматривать механические эффекты, сопровождающие любые при­родные взаимодействия. В этом проявляется ее ограни­ченность. Но это же указывает на необходимость при­влечения для построения полной теории какого-либо природного взаимодействия законов новой механики. Таким образом, обе эти теории (построенные с помо­щью единого математического аппарата полных диффе­ренциалов), как оказывается, должны применяться в тесном единстве.

Однако до настоящего времени считается, что класси­ческая термодинамика (а, следовательно, это должно от­носиться и к новой термодинамике) не приспособлена к описанию взаимодействий на микроуровне строения вещества. Поскольку это издавна сложившееся мнение имеет принципиальное значение, то целесообразно рассмотреть термодинамику и механику микрочастиц подробнее.

 

 

4.4. Термомеханика микрочастиц

 

Начнем с термодинамики микрочастиц, для чего вос­пользуемся уравнением Больцмана для энтропии [ 78,79 ]:

S = kln(W), (4.60) (4.61)

где постоянная Больцмана, равная:

k = µR/N, Дж/К°. (4.61) (4.62)

Здесь µ кг/моль, – молекулярная масса вещества: R = 8314/ µ, Дж/кг∙К°, – газовая постоянная: N, 1/моль, – число Авогадро.

Из молекулярной физики [ 84 ] известно, что масса мо­лекулы вещества равна:

m = µ/N. (4.62) (4.63)

Учитывая уравнение для удельной энтропии s = αR, умножая обе его части на массу молекулы, выраженную соотношением (4.62), находим с помощью уравнения (4.60)

α= ln (W) = f(p,T). (4.63) (4.64)

Это означает, что употребляемый в соотношениях термодинамики пространства и времени безразмерный фактор сжимаемости вещества α= f(p,T) является среднестатическим параметром состояния вещест­ва термодинамической системы (как, впрочем, и любой другой из параметров состояния вещества).

С учетом соотношения (4.63) уравнение Больцмана (4.60) принимает вид:

Ѕ = αk, (4.64) (4.65)

где теперь S играет роль энтропии микрочастицы ве­щества. Факт получения выражения (4.64) в корне меня­ет представление о новой термодинамике как о науке, способной описывать только макросистемы. С получе­нием этого соотношения эта наука приобретает воз­можность описания любых процессов, происходящих не только на макро-, но и на микроуровне строения ма­тери.

В самом деле, умножая обе части равенства (4.39) на массу молекулы и учитывая, что ее потенциальная энергия П = pV = Тαk, а концентрация молекул в единице объема вещества термодинамической системы равна п = 1 /V, получаем:

Пx = mw2 = γП = γТαk = γр/п. (4.64) (4.65)

Из этого выражения получаем ранее неизвестные со­отношения термодинамики для микрочастиц

Пs = γП = γαkТ, (4.65) (4.66)

П= αkТ = р/п, (4.66) (4.67)

р = пαkТ = Пп, (4.67) (4.68)

w = √ (γαkT/m) = √ (γp/mn) = √ (γp/ρ), (4.68) (4.69)

где р = тп – плотность микрочастицы. При этом вновь оказываются справедливыми законы:

2 Е = γП, (4.69) (4.70)

W = E ±П = (γ ± 2 )П/ 2 = (γ ± 2 )Е/γ = const (4.70) (4.71)

Если сравнить выражения (4.65)-(4.68) с уравне­ниями действующей молекулярно-кинетической тео­рии [ 79 ]:

W = 3 kT/ 2, (4.71) (4.72)

П = kТ, (4.72) (4.73)

р = пkТ, (4,73) (4.74)

w = √( 3 kT/m), w = √(2kT/m), (4.74) (4.75)

то становится очевидным, что уравнения указанной тео­рии являются следствиями более общих уравнений (4.71)-(4.74). Так, полагая в равенстве (4.8) γ = 1 с уче­том знака (+) потенциальной энергии и α = 1, получаем W = 3 kТ/2; полагая в равенствах (4.72) и (4.73) α = 1, на­ходим, что П= kТ, р = пkТ итак далее.

Нетрудно видеть, что уравнения действующей теории основаны на использовании модели идеального газа. Численные же оценки параметра α = f(p,T), отсутст­вующего в этих уравнениях, были проведены ранее в §4.2. Они обнаружили значительные расхождения в вели­чинах α. в зависимость от фазового состояния вещества. Это означает, что расчеты по уравнениям (4.71)-(4.74), не учитывающим сжимаемости веществ, дают очень большие расхождения по сравнению с расчетами по уравнениям (4.65)-(4.68). Дополнительную погрешность в такие расчеты вносит и отсутствие в уравнениях (4.71)-(4.74) параметра γ.

Изложенное свидетельствует о том, что действующая молекулярно-кинетическая теория вещества, основанная на модели идеального газа (то есть при α = 1), является весьма несовершенной и должна быть заменена теори­ей, учитывающей реальные свойства веществ, то есть теорией, основанной на универсальном уравнении со­стояния вещества термодинами-ческой системы.

Перейдем теперь к механике микрочастиц. Для это­го рассмотрим так называемую корпускулярно-волновую теорию строения вещества. Прежде всего, об­ращает на себя внимание тот странный факт, что существуют две разновидности этой теории (теория А. Эйнштейна для фотона и теория де Бройля для ней­тральных и электрически заряженных микро- и макро­тел). При этом оказывается, что основные уравнения этих теорий для энергии и импульса описываются одни­ми и теми же по форме уравнениями [ 59 ]:

E = ħω, (4.75)

k = ħz, (4.76)

где ħ = h/ 2 π Дж, с постоянная Планка; ω = 2 π / τ – кру­говая частота; τ – период; z = 2 πw'/λw – волновой век­тор, совпадающий с направлением движения волны: z = 2 π / λ – волновое число, λ – длина волны; k = mw – импульс: w – скорость движения микрочастиц. Разница между этими теориями заключается в том, что по А. Эйнштейну для фотона, как частицы, не имеющей массы покоя, из равенства (4.76) находят:

Wλ/c = h, (4.77) (4.78)

где W = тс2 – полная энергия фотона, а по де Бройлю из равенств (4.75) и (4.76) получают [ 59]:

mλw = h. (4.78) (4.79)

Имея в виду равенство (4.7) и учитывая то, что потен­циальная энергия микрочастицы равна П = ħω, полу­чаем следующие уравнения обобщенной корпускулярно-волновой теории вещества:

для кинетической энергии:

Е = γħω/ 2, (4.79) (4.80)

для импульса:

k = γħz, (4.80) (4.81)

уравнение, связывающее массу, скорость, длину волны микрочастицы (или макротела):

mλw = γh (4.81) (4.82)

где параметр γ определяется формулой (А).

Нетрудно видеть, что уравнения (4.75), (4.76) являют­ся следствиями более общих уравнений: (4.79) при γ = 2 и (4.80), (4.81) при γ = 1. Отсюда совершенно очевидно, что теории А. Эйнштейна и де Бройля, по существу, яв­ляются внутренне несогласованными. Этим и объясня­ется, обнаруженная несогласованность в результатах по определению полной энергии фотона. Поскольку для фотона γ = 2, то согласно формуле (4.12), для неорби­тальной системы «фотонокружающая среда» пол­ная энергия равна W = 2 ħω = тс2.

Следует обратить внимание на то, что формула (4.79) весьма похожа на известную формулу квантовой механики для так называемой «нулевой энергии осцил­лятора» [ 59 ]:

Е= ħω/ 2, (4.82 )(4.83)

получить которую приемами классической физики не удавалось до сих пор. Эта формула как указано в работе [ 59 ], хорошо подтверждается экспериментами по рас­сеянию света кристалла при низких температурах. С точки зрения новой термодинамики это вполне объяс­нимо, поскольку для твердых веществ при низких тем­пературах ср = cv и, следовательно, γ ≈1, благодаря чему формула (4.79) в пределе превращается в формулу кван­товой механики.

И вновь, как и в случае молекулярно-кинетической теории, для корпускулярно-волновой теории оказыва­ются справедли-выми уравнения (4.11), (4.12). Связь ме­жду этими двумя теориями микромира устанавливается посредством соотношения:

П = αkТ = ħω = р/п =..., (4,83) (4.84)

которое может быть получено с помощью формул (4.66) и (4.79) с учетом (4.7). Отсюда, с учетом формулы (4.63), следует, что фактор сжимаемости вещества ра­вен:

α= ħω/kТ = ln(W) = р/пkТ = f(p,T) =… (4.84) (4.85)

Интересно отметить, что конструкция вида ħω/kT до­вольно часто встречается в физике. Достаточно хотя бы напомнить формулу Планка для излучения абсолютно черного тела [59 ]. содержащую этот комплекс.

Учитывая полученные уравнения, энтропию микро­частицы можно выразить также следующими соотноше­ниями:

S = ħω/T= kln(W) = αk = p/nT = f(p,T) =....(4.85) (4.86)

Из анализа термодинамики и механики микрочастиц видно, что параметр γ играет в этих теориях чрезвы­чайно важную роль как регулируемый параметр. В свя­зи с этим не будет лишним напомнить, что в физике твердого тела при определении энергии кулоновского притяжения на одну ионную пару с 1910 г. пользуются понятием постоянной Маделунга [ 85], которая, по-видимому, есть не что иное, как параметр γ = f2 (е,φ), приведенный к виду γт = 1+ е.

Как уже отмечалось, термодинамические значения этого параметра, определяемого как γ = cр/cv = 2 Е/П = f (p,T), согласно справочным данным [ 80 ], также всегда превышают единицу. Это возможно только в том случае, если считать, что для любых веществ, находящихся в определенных фазовых состояниях, этот параметр равен γт = 1 + е, где е > 0. Это означает, что термодинамиче­ский параметр γследует рассматривать как средне­статистическую (то есть наиболее вероятную) вели­чину, которая характеризует собой волновой адиа­батный процесс распространения тепловой энергии при максимально достижимых скоростях распростра­нения теплового энергетического воздействия. Напри­мер, для звуковой волны, распространяющейся в возду хе при t = 20°С (γ = 1,4; α= 1; μ = 29 кг/моль) скорость звука равна:

w = √ (γαRT) = 346 м/с.

Это означает, что при γ = 1,4 основная масса молекул воздуха в звуковой волне совершает эллиптические движения со среднестатистическим эксцентрисите­том е = 0.4, определяющим форму звуковой волны. Тер­модинамический и механический параметры γ в дейст­вительности оказались тождественно одинаковыми и поэтому могут описываться одними и теми же вы­ражениями (А), (В), (С). Применительно к макро- и микро миру параметр γ является не только простран­ственно-временным параметром, но также парамет­ром, учитывающим протонно-электронное строение вещества различного химического состава на любых его энергетических уровнях.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 375; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.