Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Цели и задачи изучения темы. Тема 2.4 Подготовка образцов для растровой (сканирующей) электронной микроскопии




Тема 2.4 Подготовка образцов для растровой (сканирующей) электронной микроскопии

Вопросы для повторения

1. Дайте краткую характеристику РЭМ.

2. Перечислите основные элементы РЭМ.

3. Какие сигналы возникают при сканировании поверхности объекта электронным зондом, дайте характеристику каждого сигнала.

4. Что такое катодолюминесценция.

5. Какие биологические объекты можно изучать в РЭМ.

Цель: формирование знаний о способах подготовки биологических объектов к сканирующей электронной микроскопии.

 

Задача:

· изучение основных этапов подготовки биологических образцов для работы на сканирующем электронном микроскопе.

Основные этапы подготовки биологических объектов к РЭМ: 1) предфиксационная обработка; 2) фиксация; 3) обезвоживание; 4) высушивание; 5) покрытие объекта слоем металла. Этапы подготовки биологических объектов под номерами 1, 2, 3 соответствуют пробоподготовке к ПЭМ, а 4 и 5 хотя и похожи, но имеют свою специфику.

В настоящее время основными методами для высушивания клеток и тканей являются высушивание переходом критической точки и замораживание-высушивание.

Высушивание переходом критической точки осуществляют при помощи специальных устройств. Такой аппарат имеет герметически закрытую камеру с входным и выходным клапанами, а также снабжен устройствами для охлаждения, подогрева, регистрации температуры и давления.

 

 

Рис. 41. Аппарат для замещения жидкости переходом критической точки (фирмы Hitachi).

 

Биологический объект, погруженный в промежуточную или дегидрирующую жидкость (ацетон), вносят в предварительно охлажденную (до 10—15°С) камеру, в которую затем впускают СО2; углекислый газ конденсируется в жидкость. Затем камеру нагревают до температуры выше температуры равновесия жидкость – пар (примерно до +42° С). С подъемом температуры возрастает и давление в камере. По достижении критической точки жидкий СО2 переходит в газообразное состояние. Пока температура поддерживается выше температуры равновесия, это состояние сохраняется и газ может быть выпущен из камеры, объект становится высушенным.

Замораживание-высушивание. Это быстрое замораживание биологического объекта с последующей сублимацией льда в условиях высокого вакуума. Используя криогенные агенты (фреон 12, пропан, азот) замораживание объекта происходит без образования ледяных кристаллов, вся клеточная жидкость одновременно во всех частях объекта переходит в некристаллическое (аморфное) состояние. Образование кристаллов льда при замораживании клеточных объектов резко снижается в случае предварительного замещения воды в объекте этанолом, ацетоном, амилацетатом или фреоном 113. Замороженные объекты, покрытые тонким слоем жидкого азота, в металлических контейнерах помещают в специальную герметизированную камеру, предварительно охлажденную до -60….-80°С, в которой создается высокий вакуум. В случае замораживания обводненных объектов время, требуемое для их высушивания, варьирует от нескольких часов (изолированные клетки) до нескольких суток (тканевые фрагменты размером 1—3 мм); если же вода в объекте была предварительно замещена органическим растворителем, то процедура высушивания уменьшается. По окончании сушки камере дают постепенно нагреться до почти комнатной температуры, а затем на короткое время нагревают ее до 30°С, после чего впускают в камеру воздух (нагревание должно предотвратить конденсацию влаги из воздуха на объекте). Высушенный объект приобретает высокую гигроскопичность, его быстро переносят в камеру для покрытия металлом.

 

 

Рис. 42. Вакуумная напылительная установка (фирмы JEOL). В такой установке производят сублимацию жидкости из биологических объектов и напыление на их поверхность металлов.

Покрытие биологических объектов металлом производится в специальной вакуумной камере и может быть осуществлено двумя способами: путем испарения нагреваемого металла и путем «выбивания» атомов металла, бомбардируемого ионами инертного газа. Напыление биологических объектов слоем металла вызывает увеличение интенсивности излучения вторичных электронов и предотвращает образование электрических зарядов на поверхности объекта, все это способствует достижению более высокого разрешения. Наряду с этим нанесенный слой металла приводит к стабилизации поверхности образца, и снижению нагрева возникающего в результате взаимодействия электронного зонда с объектом. Слой металла должен быть сплошным и иметь всюду одинаковую толщину независимо от расположения и ориентации отдельных элементов рельефа поверхности объекта. Толщина слоя металла может варьировать от 5 нм до 20 нм. С целью более равномерного покрытия, а также для исключения эффекта «оттенения» объект на протяжении всей процедуры покрытия подвергают наклонам и вращению, со сменой его ориентации относительно источника испаряющихся атомов металла. Достижению равномерности покрытия металлом (особенно объектов с очень сложной конфигурацией поверхности) способствует предварительное покрытие поверхности объекта тонким слоем углерода. Благодаря способности к рассеиванию атомы углерода легко проникают во все труднодоступные участки рельефа. Непрерывный слой углерода механически стабилизирует поверхность объекта, защищает ее от атмосферной влаги и является адгезивной подложкой для следующего покрывающего слоя — металла. Для создания покрытия используют тяжелые металлы и их сплавы: Аu, Pt, Ag, Au/Pd, Pt/Pd. Все они хорошо эмитируют вторичные электроны, легко испаряются при нагревании и стабильны в обычной атмосфере (кроме Аg).




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 501; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.