Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Цена одного патрона – 15 рублей




Самой оптимальной стратегией принятия решений в этих условиях будет та, которая направлена на минимизацию общего среднего риска и, соответственно, получение максимального выигрыша – так называемая «байесовская» стратегия.

Правило принятия решения, соответствующее этой стратегии, будет состоять в учете стоимостей различных четырех исходов в принятии решения (или соответствующих значений рисков) при определении значений порогов принятия решения λ0:

, (12)

или, используя новые обозначения,

V1 = C11 – C12,

V2 = C22 – C21,

запишем новое определение для порога принятия решения:

. (13)

Соответственно, правило принятия решения будет выглядеть следующим образом:

(14 а)

(14 b)

То есть принимается решение, которое обеспечит максимальный выигрыш (минимальный риск) при имеющихся стоимостях различных исходов, априорных и апостериорных вероятностях. Тем самым обеспечивается учет при принятии решения трех важнейших факторов:

 

· прогноза возможного состояния среды (априорные вероятности);

 

· поступившей информации о реально существующем состоянии среды (апостериорные вероятности);

 

· важности (стоимости) для субъекта различных исходов при принятии решения (величина риска или выигрыша).

Таким образом, при использовании байесовской стратегии принятия решения человек использует всю доступную ему информацию о ситуации для достижения оптимальности решения.

Рассмотрим, как работает такой механизм принятия решения на примере «Охотник» при изменении стоимостей различных исходов, но неизменности априорных и апостериорных вероятностей.

 

Исходные данные:

Априорные вероятности: q1=0,5; q2=05,. То есть прогноз, который делает охотник, опираясь на информацию, полученную до начала охоты (слухи, мнение товарищей-охотников и местных жителей, и т.п.), таков: «Вероятность встретить на охоте зайца равна 0,5».

Апостериорные вероятности: p(ej /h1)=0,2; p(ej/h2)=0,8. Т.е., отправившись на охоту и проходя по опушке леса, охотник слышит в кустах шорох (ej), весьма похожий на тот, который может вызвать заяц.

Отношение правдоподобия: λ (ej)= = = 4,0.

Исходя из этих начальных условий, рассмотрим три варианта развития ситуации, различающиеся величиной доходов и расходов охотника (стоимостями исходов).

 

Вариант1:

Стоимости: цена добытого охотником зайца – 100 рублей;

C11 = 100 руб.- 15 руб.= 85 руб. (охотник получил прибыль 100 руб. за зайца, но израсходовал 15 руб. на 1 патрон. Таким образом, общий выигрыш охотника составил +85 руб.);

C12 = 0 руб. (охотник зайца не добыл, но и патронов не потратил);

C2 1 = -15 руб. (охотник зайца не добыл, а патрон потратил – таким образом его проигрыш составил -15 руб.);

C22 = 0 руб. (охотник зайца не добыл, но и патронов не потратил).

Порог принятия решения: V1 = C11 – C12 = 85 руб.- 0 руб.= 85 руб.;

V2 = C22 – C21 = 0 руб.- (-15 руб.) = 15 руб.;

Принятие решения: Применяя сформулированный последним вариант правила принятия решения, получаем:

λ (ej) < λ0, так как 4,00 < 5,66,

что означает принятие гипотезы H1 – «Заяц есть!» и выполнение соответствующего действия: «Стрелять!».

Вариант 2:

Стоимости: цена добытого охотником зайца – 100 рублей;

цена одного патрона возросла до 30 рублей.

C11 = 100 руб.- 30 руб.= 70 руб. (охотник получил прибыль 100 руб. за зайца, но израсходовал 30 руб. на 1 патрон. Таким образом, общий выигрыш охотника составил +70 руб.);

C12 = 0 руб. (охотник зайца не добыл, но и патронов не потратил);

C2 1 = -30 руб. (охотник зайца не добыл, а патрон потратил – таким образом его проигрыш составил -30 руб.);

C22 = 0 руб. (охотник зайца не добыл, но и патронов не потратил).

Порог принятия решения:

Принятие решения: имеем λ (ej) > λ0 (т.к. 4,00>2,33), следовательно, принимается гипотеза H2 - «Зайца нет!» - и охотник воздерживается от выстрела.

 

Вариант 3:

Стоимости: возросла цена добытого зайца – 180 рублей;

цена одного патрона - 30 рублей.

C11 = 180 руб.- 30 руб.= 150 руб. (охотник получил прибыль 180 руб. за зайца, но израсходовал 30 руб. на 1 патрон. Таким образом, общий выигрыш охотника составил +150 руб.);

C12 = 0 руб. (охотник зайца не добыл, но и патронов не потратил);

C2 1 = -30 руб. (охотник зайца не добыл, а патрон потратил – таким образом его проигрыш составил -30 руб.);

C22 = 0 руб. (охотник зайца не добыл, но и патронов не потратил).

Порог принятия решения:

Принятие решения: Имеем λ (ej) < λ0, так как 4,00 < 5,00, что означает принятие гипотезы H1 – «Заяц есть!» и выполнение соответствующего действия: «Стрелять!».

 

Таким образом, изменения от варианта к варианту величины расходов и доходов охотника может приводить к разным решениям и, соответственно, разным поступкам.

 

Интересным является одно из свойств байесова правила принятия решения, появляющееся благодаря связи этого правила с теорией информации – оно требует выбирать ту гипотезу, неопределенность которой на величину log λ0 меньше неопределенности другой гипотезы. Другими словами, человек стремится построить концептуальную модель своих действий с наименьшей потерей информации, добиваясь этим максимальной адекватности своего поведения.

 

Байесова стратегия принятия решения является оптимальной с точки зрения снижения общего среднего риска при принятии решения. Однако существуют и иные критерии оптимальности для оценки качества принимаемых решений, имеющие не столь общий и универсальный характер. Эти «частные» критерии оптимальности решения и соответствующие им стратегии различаются в зависимости от того, каковы условия, в которых приходится принимать решение, и целями, которые преследуются человеком, принимающим решение.

Так, если не имеется возможности оценить априорные вероятности q1 и q2, использовать байесово правило принятия решения в полной мере невозможно. Однако можно выбрать другие значения этих вероятностей и , отличные от реальных q1 и q2 - такие, при которых величина среднего риска R (см. (11)) была бы максимальной при использовании байесовой стратегии. При выбранных таким образом значениях априорных вероятностей, как бы они не отличались от реальных значений q1 и q2, суммарный средний риск R (суммарные потери) будет минимален. Иначе говоря, при этих значениях и средний риск (потери) будут одними и теми же для любых значений q1 и q2. Действуя таким образом, испытуемый стремится тем самым минимизировать ошибки обоего рода. Стратегия (и критерий), соответственно которой испытуемый выбирает такой вариант действий, называется минимаксной стратегией.

Минимаксный критерий относится к классу байесовых, поскольку в нем также используется отношение правдоподобия. Но по сравнению с байесовым правилом он является более осторожным, и, следовательно, менее оптимальным. Несмотря на явное превосходство байесова критерия над минимаксным при полноте исходных данных, последний при определенных условиях, когда байесов критерий приводит к грубым ошибкам, является «лучшим среди худших». Он предохраняет от слишком больших потерь, которые понес бы тот, кто пользовался бы любым другим правилом принятия решения.

 

В некоторых задачах, связанных с принятием решения, испытуемый может столкнуться с ситуацией, когда неизвестны ни априорные вероятности, ни стоимости, соответствующие различным типам ответов. В этом случае оптимальной может быть стратегия (критерий) Неймана-Пирсона – фиксируется вероятность ошибок одного рода (в нашем случае – это пропуск стимула или ложная тревога) и используется такое правило принятия решения, чтобы одновременно минимизировать вероятность ошибок другого рода.

 

Существуют и другие варианты критериев оптимальности – STD (цель – максимизация выигрыша), Зигерта (цель – максимизация процента правильных ответов), критерий 1 рода (цель – минимизировать неопределенность входной информации) и 2 рода (цель – достижение максимально устойчивой деятельности), и т.д., однако их рассмотрение выходит за рамки настоящего пособия.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 388; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.